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» A successful Run 1 for CMS

» Not least due to many years of R&D, construction,
commissioning of L1 trigger system

» One of the tougher aspects of the original design
» ‘Cutting edge’ technology in mid-2000s

Overview

» Decision taken to ~completely replace the system in 2013-15

» In

parallel with major changes to timing, DAQ front end

» In this talk

» Focus on technical developments

» For algorithms and physics performance, see past and upcoming CMS conference talks
» e.g. The CMS Level-1 Trigger for the LHC RUN-II, C. Foudas, EPS-HEP 2015

» W]

hy is the trigger challenging to build and upgrade?

nat were the key technologies?
hat worked, and what didn’t?

W
» W]
W

nat next?
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» Raw CMS data rate:
» 40MHz @ >1MB per event

» L1 trigger must:

» Select collisions of interest at rate of
O(100kHz)

» Make decisions within limited
latency: O(3us)

» Work on a limited subset of
detector data

» After this...

» Software-based High Level Trigger
further reduces rate to O(100Hz)

» Theme of this talk:
» Clever algorithms from HLT — L1
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ACES 2016 B Newboi@eSEn @ iiiviiiiene B BRISTOL



Requirements for LI Trigger

» Operational:
» Guarantee a hard limit on the data rate from the detector
» Provide negligible dead time
» Provide robust “handles’ for controlling rate in presence of background

» Physics:
» Trigger etficiency must be unbiased, measurable, reproducible
» In practice: provide handles to measure efficiency / purity from data

» Technical:

» Extreme reliability — without L1 trigger, there is no data taken
» This includes rapid (‘instant’) detection of faults — can lead to biased trigger and useless data
» Extreme flexibility — changing machine conditions and physics priorities
require new selection algorithms, sometimes new data flows

» Extreme performance — meeting operational requirements means
processing O(10Tb/s) of data in real time
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» From technical point of view

» Vastly improved processing capacity per $ in modern devices
» Allows also for future flexibility beyond LS2

» Substitution of copper cables with robust optical transmission

» Replacement of ageing electronics & removal from expt. cavern

» Also an opportunity to bring in the new generation of experts
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Upgrade Strategy

» Challenges for Run 2:
» Pileup reduces the effectiveness of simple threshold-based algorithms
» Muon pt mis-measurement causes rate blowup

» Position / energy resln. at global trigger limits final decision performance

» Upgrade strategy:

» Increase resolution of detector information entering trigger

» Substantially increased data flow within the system

v

Use higher granularity to select on local cluster shape for e/g, tau

» Increased algorithm complexity and gate count

v

Perform on-the-fly pileup subtraction for calo objects

» Increased algorithm complexity and gate count; data locality issues

v

Combine muon system information at the earliest possible stage

» Complete re-working of data flow in muon trigger system

» Improve muon track-finding algorithms, including in ‘overlap’ region

» Large LUTs required, increased algorithm complexity

v

Increase number and complexity of GT selection

» Increased data flow to GT
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Upgraded System Architecture
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Roadmap

ECAL / HCAL Regions / Towers / Towers / Crystals /
granularity Regions Towers Towers Towers
Detector Enhanced calo / + additional : :
: : Calo + muon + inner tracking
information unganged muons muon coverage
LI Trigger rate |00kHz |00kHz 4 |MHz
4 :
GT algorithms Cut and count + Invariant mass 4 Partlc.le flqw, track
topological isolation

CMS Preliminary, Vs = 8 TeV

ECAL Barrel
© [JRun 1

7 - 7
ECAL l—>ﬂ HCAL 0.04 Upgrade
@ i
0.03 i

0.02

0.01

. Seed tower

Region Granularity Trigger Tower Granularity B Firstneighbours

|:| Second neighbours

Il 1solation region 9).5 1 -o.é - -0.1 0 0.1 - ‘0.2 1 10.3

R %U'c', f
5 ACES 2016 © | DaeNewboli@cenehl| @ i, R HRSTOL



» MP7 (calo Layer-2, BMTE, GMT, GT)

» 144Tx/Rx 10Gb /s optical links
» V7 690 FPGA

» CTP7 (calo Layer-1)

» 67Tx, 48Rx 10Gb /s optical links, backplane 10

» V7 690 FGPA

» MTF7 (Endcap, overlap track finders)

» Large input 1O (84 Rx 10Gb /s links)
» Large 1GB LUT in external RAMs

» All boards in microTCA format

» Common interface to DAQ, timing, etc

» Modular design with optical IO for max. flexibility
» microTCA telecoms format chosen to give access

to commercial infrastructure components
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Architecture

Each card spans 8 out of 72 towersin¢ and % of n. |

E
A

18 cards, each receiving 60 links at between 5.0 Gb/s & 6.4 Gb/s of Calorimeter data

Y YY O YYY O vV

vy v
Layer-1
o~ UEE ‘EEE ‘BEE ‘BEE -
\ \

Layer 1 cards transmit
48 links @ 10G

72 input links per

Layer-2 node / Node 1
MP7 |
— 6 output links per
e N Ry V) Im Node2  MPpcard @ 10Gb/s
- A Nodes3to9
Redundant
Node Flexible system:

De-multiplexing node: v Simple to upgrade from 16 bit
Separate card or firmware MP7: Demux towers to 24 bit towers or provide
corein downstream system extra logic resources.

X

» One processing FPGA sees the entire detector for one event
» Advantages: ‘seamless’ coverage of detector; optimum use of logic elements;
redundant nodes for testing and fail-over
» Disadvantages: large many-to-many optical IO system; large IO per node;
demultiplexing stage required
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Optical IO

Calo Layer-1 Optical Multiplexer Calo Layer-2
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Molex Flexplane interconnect

» 864 x 864 10Gb /s optical patch panel reduced from 56U to 6U

» Optical links running custom packet protocol, async. to LHC clock
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Algorithms in Practice
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» Billion-transistor firmware designs now the norm

» Code management of 50k line VHDL is a non-trivial exercise
» Proactive floor planning /partitioning / clocking strategy mandatory

» With care, >90% local resource occupancy is possible

» Many bugs / ‘features’ in vendor tools found and worked around

“ University of
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Technical Context

» Scope of CMS Phase-1 upgrade larger than just L1 trigger
» DAQ front end upgrades & use of AMC13 common module
» TCDS upgrade, replacing TTC system
» Detector readout -> trigger links upgraded to multiple optical links
» Some early detector front-end changes

» A substantial re-commissioning project for all of CMS TDAQ

» Interactions between system elements are non-trivial

» In particular, interface between GT and ‘trigger control” completely new

» Commissioning strategy
» ‘Do no harm” — always have a fallback in place to guarantee functional L1

» Parallel running — commission trigger with data during physics running

» Implies operation of new and old trigger systems in parallel

» Use 2015 run as the testbed for 2016

» Advanced enough to profit from Stage-1 calo upgrade for 2015
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Parallel Running
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» Passive or active splitting of detector signals used throughout the system
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Commissioning Steps

» Commissioning steps over the last 24 months:
» Step 1: Stand-alone module tests
» Step 2: Interconnection tests

» Step 3a: System ‘datatlow commissioning” and timing in local mode

» Substantial online software effort required
» Online framework for system of this size is large and complex

» Software must also support:
» Commissioning operations as above, with scriptable interfaces

» ‘Expert mode” operations and special test modes

» This required a completely new framework: SWATCH
» Constructed building from a low base of online software effort

» Key is to maximise common interfaces & codebase across the L1 trigger
subsystems
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SWATCH System Model
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Control, Debug, Monitoring

» Variety of control approaches used across the system

» CTP7: Embedded processing via Xilinx ZYNQ platform

» Full linux OS system on combined hard CPU / FPGA device on board
» Control via ethernet; many embedded functions possible

» MP7: IPBus lightweight ethernet control protocol
» Reliable UDP-based ethernet control with software API and on-chip bus
» The ~minimal way to solve the problem; now in use in all LHC experiments

» MTE7: PCle communication from external host PC
» Uses embedded PCle blocks in FPGA for low-overhead solution
» High throughout allows loading of large LUTs rapidly at system start

» Pros and cons to each of these approaches

» See XTCA workshop later today for more discussion
» Common higher level software model hides the differences
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#Events

Current Status

» Full Phase-1 trigger system now operating in global mode

Data/Emulator

» Culmination of an exhausting 36 months development

» Comparison of trigger with emulator indicates O(100%) agreement
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Successes

» Modular electronics based on large FPGAs
» Have already seen the benefits in flexibility

» The future is ‘lego’

» Common firmware and software

» Some firmware blocks (links, interfaces, DAQ) in wide use across CMS
» Key is standardisation of on-chip bus interface
» Modular common online software now mandatory for project of this scale

» Final integration of calo trigger took ~6 months, muon trigger ~few days

» Mass deployment of high speed MM parallel optics

» Performance outstanding, cost is not huge compared to processing elements

» Though, latency consumption is non-trivial;, compensated by faster processing on FPGAs

» Parallel commissioning

» Required much upfront work during LS1, but otherwise impossible to commission trigger
on schedule

» The “split links” remain for testing of new ideas in coming years
» Time-multiplexed architecture
» This approach is likely to be used for future trigger upgrades
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Challenges

» A very large technical step during LS1

» ‘Seamless transition” between R&D and deployment of 7-series modules

» Still learning much about the technology during early commissioning

» Board manufacturability required careful attention throughout the project

» Procurement also painful at times for few / advanced / expensive boards

» ‘Re-learning CMS’
» Alot of deep voodoo was uncovered (and expunged) during the upgrade
» Parallel running forced a more programmatic approach to timing in

» Schedule was tight
» We took some risk in deployment during LS1 — but always a way back

» Effort for online software insufficient
» Only heroic (and not sustainable) efforts have brought us to where we are

» Appears to be a chronic problem; the solutions are political, not technical
» The job does not end when the hardware is finished (it never ends)

» microI'CA not a panacea

» We entered the microTCA world with high hopes, and learnt some lessons
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L essons Learnt

» Common components make sense
» The ‘new world” applies to hardware, firmware, software

» Much upfront effort in “soft” work: specification, standards, interfaces, testbenches, etc
» Cannot bring about this approach by legislation, only by consensus

» microTCA advantages
» A key enabling technology behind our successful modular apprc

» Commodity ethernet control links were a success
» Adoption across CMS allowed exchange of experience

» microT'CA disadvantages

» Form factor not optimal for future more power-hungry FPGAs
» Physical, electrical, and logical interface specification has issues

» Including an unreasonably complex and fragmented specification
» No well-defined approach to backplane extensibility

» Vendor support mostly good, but serious issues with
cross-vendor interoperability

» Reliability and COTS quality claims not (yet) substantiated
» Bottom line: microTCA not likely to be the baseline for Phase-2
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Conclusions

» Phase-1 trigger upgrade for CMS successfully deployed
» A marathon effort over a number of years by many people

» Substantial benefits for CMS Run 2physics programme and operations

» Successful new developments
» Modular processing platform approach based on FPGAs / parallel optics
» Mass deployment of microTCA electronics
» Splitting of detector data and parallel commissioning

» Time-multiplexed architecture

» Many lessons learnt
» Common components pay off, but do not come “for free’
» microTCA served us well for this project, but search for ‘the new VME’ continues

» Software continues to be an existential threat to projects of this scale

» The future

» Trigger design allows for flexibility, expansion — will make much use of this

» Absorbing lessons as we embark upon Phase-2 design choices for CMS TDAQ

Rutherford Appleton Laboratory
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