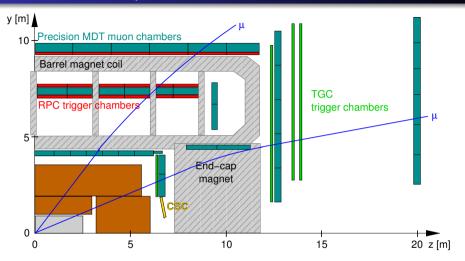

# The ATLAS Muon Spectrometer at the LHC and the HL-LHC

Oliver Kortner on behalf of the ATLAS Muon Collaboration

Max-Planck-Institut für Physik, Munich

09.03.2016, ACES 2016

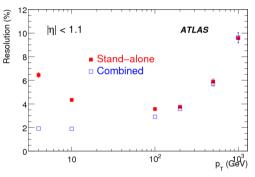

# The ATLAS muon system



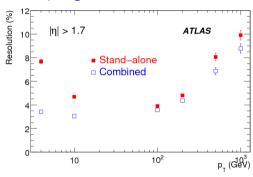
- Focus on stand-alone muon reconstruction.
- ullet Air-core toroid o minimization of multiple scattering.

2

# The ATLAS muon spectrometer at the LHC

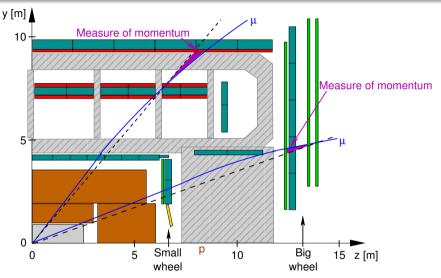



- Fast trigger chambers: RPC, TGC
   (<10 ns time resolution, moderate spatial resolution ~mm-cm ).</li>
- High-resolution tracking detectors: CSC, MDT (40  $\mu m$  spatial resolution ).
- ullet Optical alignment system with 50  $\mu m$  resolution.
- Pseudorapidity coverage:  $|\eta|$  <2.7.


3

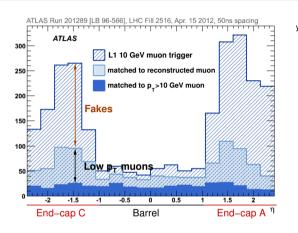
#### **Muon momentum resolution**

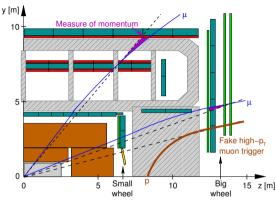





#### End-cap region

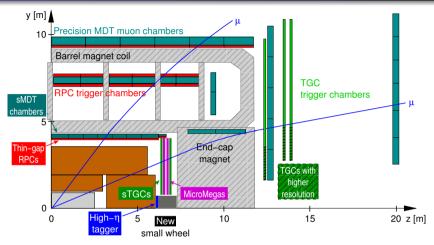



- ~4% muon spectrometer stand-alone resolution for  $10 \lesssim p_{\rm T} \lesssim 200$  GeV.
- Muon spectrometer crucial to reach 10% momentum resolution at  $p_{\rm T}=1$  TeV.


# The ATLAS 1<sup>st</sup> level muon trigger in LHC run I



- ATLAS uses as 3-level trigger system.
- The level-1 high  $p_{\rm T}$  muon trigger built out of a coincindence of three RPCs in the barrel or three TGCs in the big end-cap wheel.
- Muon momentum estimate from the size of the deviation of hits from an infinite momentum track from the interaction point.

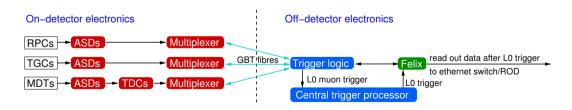

# Sources of 1 $^{st}$ level muon triggers in LHC run I



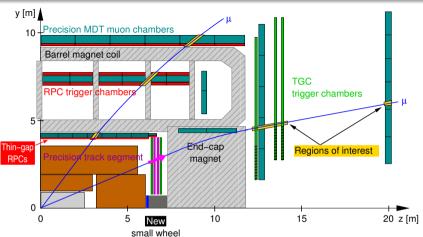


- Muon trigger rate dominated by fake triggers in the end-caps caused by charged particle not emerging from the interaction point.
- ullet Real muon triggers contaminated with sub- $p_{
  m T}$ -threshold muon due to the reduced momentum resolution caused by the moderate spatial resolution of the trigger chambers.

# The ATLAS muon spectrometer at the HL-LHC




- <u>New small wheel</u> with high-resolution trigger chambers to reject fake muon triggers and improve momentum resolution at trigger level.
- ullet New TGCs with higher resolution to cope with background at  $|\eta|\sim 2.7.$
- New thin-gap RPCs to close acceptance gaps of the barrel muon trigger.
- New sMDT chambers to free space for new RPCs.
- High- $\eta$  tagger to identify muons up to  $|\eta| = 4.0$ .
- + New on- and off-chamber electronics for new trigger architechture.


7

### **ATLAS** trigger scheme for HL-LHC

- New trigger scheme:
  - Only two trigger levels: level 0 (L0) and high-level trigger (HLT).
  - L0 rate: 1 MHz. L0 latency:  $6-10 \mu s$ .
- ⇒ In this scheme all muon chambers have to send their data off to USA15 continuously for further processing.
- ⇒ New on-chamber (MDT ASD and TDC chips, multiplexers ) and off-chamber electronics (trigger logic, Felix ) needed!

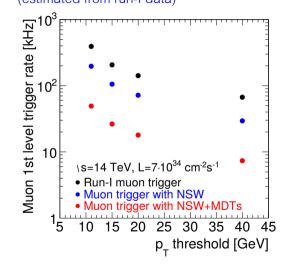


## The ATLAS 1<sup>st</sup> level muon trigger at the HL-LHC



Processing step

Time after pp collision


- 1. Continuous stream of muon hit data to off-detector trigger logic. 1  $\mu s$  2. Pre-muon-trigger based on coincidences of trigger-chamber hits in the inner, middle, and outer layers.
- 3. Use of precision NSW and MDT hits for the refinement of muon  $p_{\rm T}$  measurement in regions of interest defined by the trigger chambers.
- 4. Final muon trigger based on refined momentum measurement.  $6 \mu s$

9

 $3 \mu s$ 

# Single-muon trigger rates at the HL-LHC

# Single-muon trigger rates (estimated from run-l data)



- Unacceptably high rate of run-I
   20 GeV muon trigger: ~150 kHz.
- Removal of fake triggers by including the NSW in the trigger coincidence.
  - $\Rightarrow$  Rate reduced to  $\sim 70$  kHz.
- Sharpening of the turn-on curve with MDT data reduces trigger rate to  $\sim 18$  kHz.
- $\Rightarrow \sim 130$  kHz free for other triggers!