CMS Tracker Upgrade:

Requirements and Layout

Stefano Mersi On behalf of the CMS Collaboration 9 March 2016 ACES 2016

Requirements from HL-LHC

Pile up to **200**Occupancy ~ %

Operate up to 200 <PU>

Maintain occupancy at the ~1% level **higher granularity** in the strip detectors

Radiation tolerance up to **L.dt** = **3000 fb-1**

Radiation tolerance up to 3000 fb-1

Maybe the inner parts of the pixel detector could be replaced if needed

- Radiation levels depend essentially on R, not much on z
 - Target is ~ 10× present trackers:
 i.e. about ~10¹⁵ for the Outer Tracker & 2×10¹⁶ for the innermost pixel layer
- Challenging for silicon sensors and electronics (notably in the pixel region)

Requirements from experiment

Hi-Lumi: improve trigger

The Trigger is much more challenging at HL-LHC selection algorithms become less effective in high pileup!

Solution:

- Higher first-level trigger rate
- More effective event selection: higher latency
- the Outer Tracker contributes to the first trigger decision

```
100 kHz \rightarrow 750 kHz 
3.2 ms \rightarrow 12.8 µs 
ATLAS: 100 kHz \rightarrow 1000 kHz 
2.5 ms \rightarrow 6.0 µs
```

Additional improvements

Extend tracking acceptance

Extended tracking acceptance

- Up to η~4 (concerns mostly the pixel detectors)
- Main goal: assign jets to primary vertices in forward
- Helps for Vector Boson Fusion and Vector Boson Scattering physics

Improve resolution Reduce secondaries

Reduce the amount of material in the tracking volume

- The tracker material is a major limitation for the overall performance today:
 - Multiple scattering limits pT resolution
 - Secondary interactions

Radiation tolerance up to **L.dt** = **3000 fb-1**

Radiation hardness Operating cold (-20°C) Pixel replacement possible

Pile up to 200
Occupancy ~ %

Increase granularity

Hi-Lumi: improve trigger

Longer latency → 12.5 µs Higher L1A rate → 750 kHz Tracking @40MHz for trigger

Improve resolution Reduce secondary interactions Increase granularity Reduce material

Extend tracking acceptance

Mostly through pixel layout

Material amount is limiting current tracker's performance: reduce material

LESS power/material

MORE power/material

New technologies

- DC-DC converters
- CO₂ cooling
- lp-GBT
- Front-ends

Less layers in outer tracker

Higher granularity radiation tolerance bandwidth

Layout overview

Layout not final, and not the only option under study, notably for the Pixel

Layout overview

Also a *tilted* layout under study for the inner layers of the Outer Tracker Barrel

Tracker input to Level-1 trigger

- Silicon modules provide at the same time "Level-1 data" (@ 40 MHZ), and "DAQ data" (upon Level-1 trigger)
 - The whole tracker sends out data at each BX
- Level-1 data require local rejection of low-pT tracks
 - To reduce the data volume, and simplify track finding @ Level-1
 - Threshold of $\sim 2 \text{ GeV/c} \Rightarrow \text{data reduction of } \sim \text{one order of magnitude}$
- Design modules with pT discrimination ("pT modules")
 - Correlate signals in two closely-spaced sensors exploiting the strong magnetic field of CMS
 - Provide (relatively) precise information also on the z (R) coordinate to identify the origin along the beam axis with 1÷2 mm precision, to enable some vertex discrimination
- Level-1 "stubs" are processed in the back-end
 - Form Level-1 tracks, pT above ~2 GeV to be used to improve different trigger channels

pT modules

- Sensitivity to pT from measurement of $\Delta(R\phi)$ over a given ΔR
 - For a given p_T , $\Delta(R\phi)$ increases with R
 - In the barrel, ΔR is given directly by the sensors spacing
 - In the end-cap, it depends on the location of the detector ($tg\theta$) (end-cap configuration typically requires wider spacing, and yields worse discrimination)
- Optimize selection window and/or sensors spacing
 - To obtain, as much as possible, consistent pT selection through the tracking volume
- The concept works down to a certain radius
 - $20 \div 25$ cm with the CMS magnetic field and a realistic ~ $100~\mu m$ pitch
- No room for stereo strips

Tracker Layout

Sensor spacing in the Outer Tracker was tuned to have as much as possible a uniform pT cut (around 2 GeV/c).

Further tuning is performed by adjusting the hit-matching windows

Level-1 "stubs" are processed in the back-end Form Level-1 tracks, pT above ~ 2 GeV, contributing to CMS Level-1 trigger

- @ 40 MHz Bunch crossing
- @ 750 kHz CMS Level-1 trigger

P_T modules

2 Strip sensors

2×1016 Strips: ~ 5 cm × 90 μm **2×1016 Strips:** ~ 5 cm × 90 μm

P~5W

~ 2× 90 cm² active area

For r > 60 cm

Spacing 1.8 mm and 4.0 mm

25

Report

Pixel + Strip sensors

2×960 Strips: ~ 2.5 cm × 100 μm

32×960 Pixels: ~ 1.4 mm × 100 μm

P~7W

 $\sim 2 \times 45$ cm² active area

For r > 20 cm

Spacing 1.6 mm, 2.6 mm and 4.0 mm

Operate sensors at about -20°C with cooling set point at -30°C

- Read out from the edges, to avoid difficult / expensive TSV technologies
- Flex hybrid circuit collects signals from both sensors
 - Supports wire-bonding to sensors and bump-bonding of readout ASICs
 - Complex routing and high-density of lines
 - 8 CBC, 1016 channels per sensor per end
- The sensors has 90 μm pitch at the limit of the hybrid technology

• Read out from the edges, to avoid difficult / expensive TSV technologies

PS module

- Size limited to ½ 6" wafer
 - Cover the length with 2 chips connect from the sides
 - 25 mm long strips required at low radii anyway
- Hard limit at 100 µm pitch in order to use (inexpensive) C4 bump-bonding
 - N.B. 30 m² of Macro-Pixel Sensors
- Segmentation in z is a compromise between z_0 resolution and power dissipation
- Deploy down to ~20 cm to achieve desired z_0 resolution in L1 tracking
 - Also much less expensive and power-hungry than pixel modules!

- 2. PS-p silicon sensor
- 3. MPAs
- 4. Al-CF sensor spacer
- 5. CFRP base plate
- 6. FE Hybrid
- 7. Opto-Link Hybrid
- 8. Power Hybrid
- 9. SSA
- 10. CIC
- 11. Hybrid CF support
- 12. Al-CF Hybrid spacer

End-cap Double Disks

- φ overlap within disk, R overlap with next disk
- Same **rectangular** modules as in the barrels Not wedge-shaped modules:
 - 15 rings would imply 30 different hybrid circuits – not feasible
 - resolution ~same with rectangular modules

Tilted TBPS motivation

- Variant of TBPS geometry with progressively tilted modules
- Short central section followed by groups of rings with same tilt
- Same coverage and ~ same tracking performance with a smaller number of modules

Stub finding efficiency drops at the edge of the "flat" TBPS without an interconnect technology (ex: TSV) between the two halves of the module, tracks crossing the middle will not generate a stub

Through-Silicon Vias would be required to achieve acceptable efficiency in the "flat" layout

Stub Finding efficiency recovered in the tilted TBPS with a smaller number of modules needed!

(for an ideal tilt, and very small inefficiency for a near-ideal tilt)

Pixel detector

Common ATLAS & CMS development in RD53, 2500 µm² cell size

Final detectors will probably look quite different, though...

- Ability can to extract/install the pixel detector with the beam pipe in place is required
- Module placement limited by mechanical tolerance
- Radial boundary assigned: 29 mm → 200 mm

Hit resolution study

Hit resolution study on barrel layer 1 to explore a wider range of incident angles Full simulation, different sensor thickness and detection thresholds, **no radiation damage**

- **Square pixels** are better for z resolution in the central region
 - also require lower detection threshold: will get even worse with rad damage study ongoing
 - also aggravate substantially the bandwidth requirement
- Rectangular pixels are better in all other cases
 - needed in a barrel flat geometry

- Initial design based on phase-1 detector
- Extension of η coverage obtained by increasing number of disks
- End-cap geometry inspired by Outer Tracker Double-Disks
 - Different options for module size under consideration
 - Large pixels (×4 surface) could be used in the outermost layers/rings, to save power

- **Complication**: installation of central section around the beam pipe requires a larger opening in the forward
 - The detector slides in with an inclined angle
- The OT/Pixel boundary must be at larger radius in the forward part
 - A step? Where? How large?
 - A conical boundary?

Studies just started

- **Complication**: installation of central section around the beam pipe requires a larger opening in the forward
 - The detector slides in with an inclined angle
- The OT/Pixel boundary must be at larger radius in the forward part
 - A step? Where? How large?
 - A conical boundary?

Studies just started

- **Complication**: installation of central section around the beam pipe requires a larger opening in the forward
 - The detector slides in with an inclined angle
- The OT/Pixel boundary must be at larger radius in the forward part
 - A step? Where? How large?
 - A conical boundary?

Studies just started

Tracker layout

Lower density

2S modules outside
(8224 modules)

PS modules middle z info in trigger θ info in trigger (6890 modules)

Detailed material model

Pixel modules inside accurate impact parameter resolution & forward coverage

First material model

"Small version" 3284 modules (Insertion issue to be solved)

Tracker layout

Lower density

2S modules outside
(8224 modules)

PS modules middle z info in trigger θ info in trigger (5668 modules)
-1222 modules discount!

Detailed material model

Pixel modules inside accurate impact parameter resolution & forward coverage

First material model

"Small version" 3284 modules (Insertion issue to be solved)

Layout of current baseline

- ×4 granularity in strip sensors
- +3 layers of MacroPixel sensors
 - Unambiguous 3D coordinates
 helps track finding in high pile-up
- Up to 10 points available for track-trigger up to $\eta=2.5$
 - Comparable to current tracker's coverage, but at L1

Layout of current baseline

• Up to 10 points available for track-trigger up to $\eta=2.5$

helps track finding in high pile-up

- Comparable to current tracker's coverage, but at L1
- Hit coverage up to η≈4 in full readout (after L1 Accept)

Tracker material budget

CMS Phase-1

Tracker material budget

CMS Phase-2

Upgrade overview

Current

Upgrade

(tilted) Outer	~200 m ²	Silicon	~202 m ²	Silicon
	9.3 M	Strips	44.3 M	Strips
	0	MacroPixels	174 M	MacroPixels
	15'148	Modules	13'892	Modules
	100 kHz	readout rate	40 MHz	readout rate*
xel	~1 m ²	Silicon	3.2 m ²	Silicon
) Pixel	~1 m ² 66 M	Silicon Pixels	3.2 m ² 700 M	Silicon Pixels
(small) Pixel				J.1. 22.11

^{*} only high-pt hits read-out

Conclusions

• Full tracker:

- Higher granularity to enable efficient tracking in high-pileup
- Also offers improved tracking resolution
- Material budget challenge (especially for pixels)

Outer Tracker:

- Implementation of tracking in the first level of the trigger has driven several design choices
- 6-barrel-layers + 5-disks configuration was selected
- Tilted PS barrel is the favored option
- End-cap inner boundary to be defined (depends on pixel)

• Pixel:

- Material models and single-hit resolution studies are becoming available to optimize the detector layout for tracking
- Several layout options are still under study

Back-up

Detector performance

Phase-1 @ 50 PU vs. Phase-2 @ 140 PU

Expect substantial improvement also in z_0 resolution and b-tagging

Too early to give quantitative estimates

Cannot push the detector (much) beyond design lifetime of 500 fb⁻¹ and specifications PU ≈ 20

Pixel:

Pile-up!

- 2-track resolution
- efficiency

Outer tracker:

Radiation damage

- leakage current
- double-sided not cooled
- Huge impact on tracking performance

Cannot push the detector (much) beyond design lifetime of 500 fb⁻¹ and specifications PU ≈ 20

Pixel:

Pile-up!

- 2-track resolution
- efficiency

Outer tracker:

Radiation damage

- leakage current
- double-sided not cooled
- Huge impact on tracking performance

After installation

At 1000 fb-1 & PU=140

Summary of Outer Tracker

