

ATLAS CALORIMETERS BACK-END ELECTRONICS AT HL-LHC

Outline

- Calorimeters upgrade
- Upgrade plans
- LAr back-end upgrades
 - Phase I and Phase II
- Tile back-end upgrades
 - Demonstrator and Phase II
- Conclusions

3

- Full digital trigger architecture Phase I
 - Higher granularity and improved resolution to the Level 0/1 trigger processors
 - Level 0: 1 MHz trigger rate → Phase II
- New readout strategy Phase II
 - All samples will be transmitted to the back-end electronics every bunch crossing
 - Major replacement of the front-end and back-end electronics

LAr back-end upgrades

LAr back-end upgrades

- Phase I: Trigger system upgrade
 - Installation of the new digital trigger path with L1Calo system
- Phase II: Back-end electronics system will be optimized for high pile-up data taking
 - Replacement of the back-end readout electronics: LAr Pre-Processor (LPPR)
 - New digital filtering algorithms for energy reconstruction
 - Implementation of new trigger interfaces with LO and L1 trigger systems

Phase II (DAQ)

 $\Sigma \alpha_i S(t-\tau_i)$

Phase I (Trigger)

LAr Phase-I upgrade

- □ LAr trigger electronics upgrade planned for ~2019
 - Order of magnitude increase in granularity to Level 1 trigger
- Level 1 trigger system will receive new sums for each layer with higher granularity: Super-Cells
- Study and implementation of new algorithms at Level 1
- Super-Cells are digitized at 12bits@40 MHz
- Complete redesign of the L1Calo interface
 - LAr Digital Processing System (LDPS)
- Sums are processed by the LDPS and sent to three feature extractors (FEXs)
 - eFEX, jFEX and gFEX

LAr Digital Processing System - Phase I

- Digital signal processing on Super-Cells in real time
 - Precise E_T measurement
 - Pile-up suppression
 - Bunch crossing assignment
- LDPS receives digital data at 25 Tbps
- Transmits processed data to L1Calo system at 41 Tbps
- Total of 32 LAr Digital Processing Blades (LDPB) compose the LDPS
 - Handles \sim 1100 Super-Cells in average
- Hardware
 - ATCA carrier blade each with 4 AMC cards
 - Each AMC contains an Altera Arria 10 FPGA
 - 4 TX MicroPODs + 4 RX MicroPODs
- Sucessful link test done with gFEX + FELIX last month
- No hardware update is expected for Phase II

LATOME AMC board

LDPB prototype demonstrator - Phase I

- Pre-prototype of the LDPB for the LAr demonstrator
 - Fully compliant ATCA blade
- Two Front FPGAs (Altera Stratix IV)
 - Receives digitized data from one LTDB
 - Stores data in circular buffers with a depth of 2.5 µs
 - Format them in ATLAS RAW Event Fomat
- One Back FPGA (Altera Stratix IV)
 - Readout through 10 Gbps Ethernet network
 - Data readout with Fabric Interface using IPbus protocol
- Optical communication with front-end
 - 40 optical RX links@ 4.8 Gbps, 8B10B encoding
 - Continuous data stream of 320 Super-Cells from one LTDB
- Interconnectivity between FPGAs
 - 8 RX/TX links up to 8.5Gbps, XAUI protocol@3.125 Gbps
 - 16 LVDS links up to 1.6Gbps between FPGAs
- 2 boards were installed in USA15 during summer
 2014 for the LAr demonstrator
- Tested during data taking 2015 with calibration system and with collision data

LDPB prototype (ABBA)

Pulse shapes of a Super Cell for injected calibration pulses

LAr Pre-PRocessor - Phase II

- Natural evolution of the LDPS developed for Phase I
 - Faster input links LpGBT
 - Fiber re-mapping plant
- 60/120 LPPR boards in ATCA format
- Each LPPR will host 4 high performance
 FPGAs with 120 high speed input links
 - Xilinx Virtex UltraScale / Altera Stratix10
 - Each FPGA will handle around 1 Tbps
- Implementation of the LO buffer
- Processing algorithms
 - Energy and time reconstruction
- Interfaces to L1Global trigger system and to FELIX system
- R&D ongoing
 - Fully functioning prototypes are scheduled by 2017

Digital filtering studies - Phase II

- Digital filtering choice are being studied
 - Sampling frequency of Super-Cells at 40MHz/80 MHz
- Potential pile-up filtering algorithm: Extended Linear Optimal Filtering
 - Optimizes the noise on the energy measurement in extreme pile-up conditions
 - Sequence detection algorithm
 - Uses 10 samples at 80 MHz(5 BC)
 - Showing promissing results
 - Good linearity and resolution
 - Implementation in FPGAs is complex but possible

Tile back-end upgrades

	Present	Phase II
Total BW	~205 Gbps	~40 Tbps
N. Fibers	256	4096
BW/module	800 Mbps	320 Gbps
Nb. boards	32	32
Nb. crates	4 (VME)	4 (ATCA)
In BW/board	6.4 Gbps	1.25 Tbps
Out BW / board _{DAQ}	2.56 Gbps	40 Gbps
Out BW / board _{L1/L0}	Analog	500 Gbps

- Complete replacement of the back-end electronics during the LS3
 - New readout strategy to provide digital trigger information at low latency for LO/L1
 - Pipelines, derandomizers buffers, DCS and TTC interface moved to the back-end electronics

Demonstrator project and plans

- Evaluation the new readout schema and trigger system interfaces
 - TileCal demonstrator module is operative in our lab at CERN
- Plans for the demonstrator project
 - Test beam 2015 (7th October 21th October) and 2016 (June and September)
 - Possible insertion of one demonstrator module into the ATLAS at the end of 2016
 - Insertion of more modules during LS2 depending of the demonstrator results and performance
- Readout architecture for Phase II but keeping backward compatibility with the current system
 - Tile Pre-Processor will interface the current TTC system (or FELIX) with the new front-end electronics
 - Back-end electronics will send Level 1 selected events to the current RODs
 - Provide analog trigger signals to the present L1Calo system

TilePPr prototype - Demonstrator

15

- Represents 1/8 of the final TilePPr module for Phase II
- Double mid-size AMC form factor
 - ATCA carrier / µTCA
- Virtex 7 + 4 QSFPs (Readout)
 - Readout and operation of 1 complete TileCal module
 - TTC/DCS distribution to the FE
 - Interface with FELIX system
 - Energy and time reconstruction algorithms
- Kintex 7 + Avago MiniPOD TX (Trigger)
 - Evaluation of the interfaces with LO/L1Calo and latencies between systems
 - Trigger data preprocessing algorithms
- DDR3 memories, FMC, GbE ports, PCle, ...
- System has been succesfully tested
 - BERT showed no errors during 115 hours
 - 5.10^{-17} for a confidence level of 95%
 - 16 links at 9.6 Gbps with PRBS31 pattern

TilePPr prototype

Eye diagram at 9.6 Gbps (GTX)

Charge injection linearity test

TilePPr Firmware - Demonstrator

16

- Developed in parallel of hardware
 - Xilinx VC707 evaluation board
 - 2 x QSFP FMC boards (4 QSFPs)
- 16 asymmetric GBT links
 - 9.6 Gbps for the uplink: readout path
 - 4.8 Gbps for the downlink: TTC / DCS
- Pipelines memories (up to 12.5 µs)
 - Samples with 2 gains x 48 channels → 1 TileCal module
- TTC decoding + G-Link encoder
 - Receive L1A, commands from the legacy TTC system
 - Sent event data to the current RODs after a L1A
- No energy and time reconstruction algorithms in the TilePPr at this moment
 - Performed by current RODs
- IPbus protocol for control and readout with GbE
 - Moving to PCle or FELIX system for readout
- Firmware validated during last October at test beam

Muon energy distribution (Test beam)

Tile Pre-Processor – Phase II upgrade

- Final design based on the experience with the TilePPr demonstrator
- 32 TilePPr boards in ATCA format
 - ATCA carrier + 4 AMCs
 - Xilinx Kintex UltraScale
 - Implementation of LO buffers
 - Real-time energy and time reconstruction algorithms
 - 32 TileTDAQ-I
 - Rear Transition Module (ATCA)
 - Xilinx Kintex UltraScale
 - Preprocessed trigger data
 - Interface with LOCalo, LOMuon and FELIX system
- R&D ongoing
 - Fully functioning prototypes are expected by 2017

Conclusion

- Complete re-design of LAr/Tile back-end electronics for Phase II
 - New trigger and readout strategies with new trigger algorithms
 - No buffers in the front-end electronics → all data readout at LHC frequency
- LAr will install the new LAr Digital Processing System (LDPS) during the Phase I (~2019)
 - Selection of the technologies for LPPR in phase II will be made based on the experience gained
- LAr/Tile back-end electronics R&D for HL-LHC is well established
 - Tile: prototype of the TilePPr is ready and operative
 - A first firmware approach is full developed
 - Possibility of insert one TileCal demonstrator module at the end of 2016
 - LAr: New LPPR will naturally evolve from Phase I LDPS
 - Digital filtering algorithms are being studied to deal with the high pile-up
 - Final prototypes for Phase II are envisaged by 2017 (Technical Design Review)