

ALICE upgrade in LS2

A. Kluge, March 6, 2016

What is different in ALICE? What do we upgrade?

ALICE

ALICE: heavy ion collision

ALICE Run1&2

• At present:

- Interaction rate 8 kHz → max. trigger rate < 3.5 kHz
- Why?
 - Event topology too complex for simple electronics triggers

1 TB/s data in Run 3

• Reconstructed needed \rightarrow All event needs to be read out

Reduction of interaction rate to 8 kHz

• Not all bunches have collisions

ALICE TPC

- Ions drift back \rightarrow
 - gating grid closed for 280 us \rightarrow max. 3.5 kHz trigger rate

ALICE: upgrade goals

ALICE: upgrade goals

- High precision measurements
 - of rare probes at low pt
- Cannot be selected with a trigger
- Require a large sample of events recorded
- Target
 - Pb-Pb $\geq 10 \text{ nb-1} \rightarrow 8 \times 10^{10} \text{ events}$
 - pp (@5.5 TeV) ≥ 6 pb-1 → 1.4 x 10¹¹
 events
 - Gain factor 100 in statistics

- Upgrade ALICE read-out and online systems
 - Read-out all Pb-Pb interactions at
 - 50 kHz (L = 6 x 10^{27} cm⁻¹s⁻¹) with min bias trigger
 - Online data reduction ← no filtering
 - Reconstruction of clusters and tracks

- Improve vertexing and tracking at low p_t
 - New inner tracking system

ALICE

Upgrade architecture overview

Upgrade architecture overview

TTS between CTP & CRU

- Option to use GBT links with active splitting or
- PON devices + FPGAs
 - Fully synchronous with Bunch Clock
 - Custom protocol (removed typical PON protocol layers)
 - Detector busy transmitted back to CTP (delay of up to 8 us)

CRU – common read-out unit

Common readout unit (CRU)

Common read-out unit – PCI40 ()

PCI40 (LHCb) prototype exists

- Main functionality tested by LHCb and ALICE
- Pre series production spring 2016
 - Date adapted to
 - delivery of next FPGA release

PCI40 prototype CPPM

CTP – Central Trigger processor

CTP

Trigger signals

Level	Trigger	contributing
	Input	detectors
	to CTP	
	[ns]	
LM	425	FIT
L0	1200	ACO, EMC, PHO, TOF, ZDC
L1	$^{\#}6100$	EMC, ZDC

- LM .. TRD & ITS: by FIT only
- L0 .. main trigger signal: by FIT & additional trigger inputs
- L1 .. optional EMC-jet and ZDC contribution: long latency

Heartbeat trigger

- Periodic non-physics trigger to
 - synchronize data from non-/continuous readout detectors
 - synchronize local copies of bx-id, orbit counters

I just said it works only up to 3500 Hz

multiple GEM principle

GEMs are made of a copper-kapton-copper sandwich, with holes etched into it

Electron microscope photograph of a GEM foil

4 GEM simulation

TPC front-end card

524.160 channels @ 50 kHz read-out rate

TPC: common mode effect

• Common mode effect: Baseline shift and "noise" due to capacitive coupling of electrodes in readout structure

SAMPA front-end ASIC

Base line correction in CRU

Magenta: last value kept inside detected signal Black: detected signal region excluded from mean calculation

TPC processing chain

CRU processing

SAMPA

SAMPA

- TPC & muon chambers (MCH)
 - 32 channel amplifier-shaper-ADC-DSP
 - triggerless/continuous & triggered readout
 - < 600 e @ 25 pF (TPC), < 950 e @ 40 p (MCH)
 - bi-polarity input
 - 10 bit ADC 5/10/20 Msamples/s
 - on ASIC base-line correction and zero suppression
 - 1-11 (programmable) x 320 Mbit/s serial outputs
 - 130 nm TSMC CMOS process

SAMPA: 2 read-out modes

SAMPA

Die size: 9.575 x 8.985 mm²

ACES, March 6, 2016

A. Kluge

Simulation 8 ch. FE + ADC: response 20mV/fC neg

ADC ENOB simulation: 9.6 bit

ACES, March 6, 2016

Time [ns]

ITS – Inner Tracker System

New ITS Layout

- 7-layer barrel based on CMOS sensors
- Radial coverage 22 400 mm
- ► Total active area ~10m²
- ~ 24,000 pixel chips (12.5 G pixels)
- Radiation: ~2.7 Mrad (~1.7x10¹³ 1MeV n_{eq}/cm²) including safety factor 10

ACES, March 6, 2016

CMOS Pixel Sensor using TowerJazz 0.18µm CMOS Imaging Process

Tower Jazz 0.18 µm CMOS

- feature size 180 nm
- metal layers 6
- gate oxide 3nm

substrate:	$N_A \simeq 10^{18}$
epitaxial layer:	$N_A \simeq 10^{13}$
deep p-well:	$N_A \simeq 10^{16}$

- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (18μ m to 30μ m) on p-type substrate
- Small n-well diode (2 μ m diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate (contact from the top) can be used to increase depletion zone around NWELL collection diode
- Deep PWELL shields NWELL of PMOS transistors to allow for full CMOS circuitry within L. Musa active area ACES, March 6. 2016 A. Kluge

pALPIDE-1&2 – Main Design Features

ALPIDE full-scale prototypes

Figure: picture of pALPIDE-2

Main parameters

- Dimensions: 30mm x 15 mm
- Pixel Matrix: 1024 cols x 512 rows
- Pixel pitch: 28μm x 28μm
- Integration time: <10µs
- Power consumption: < 40mW/cm²
- (vers, 3) 8 sectors with different pixels ACES, March 6, 2016 A. Kluge

Matrix divided in 8 sectors, each with 128 cols x 512 rows

- Collection node: octagonal 2µm diameter
- Spacing NWELL and PWELL: 2μm to 3μm
- 2 reset mechanism: diode, PMOS

ITS Pixel Chip

pALPIDE-2 - 2nd full-scale prototype (2015)

≈ 5 µm σ_{det}

Test beam (7-plane telescope)

$\lambda_{\text{fake}} < < 10^{-5}/\text{event/pixel} @ \varepsilon_{\text{det}} > 99\%$

ACES, March 6, 2016

A. Kluge

ITS Pixel Chip

Semi-automatic Module Assembly Machine

- Prototype is being tested at factory (IBS Precision Mechanics – Netherlands)
- Delivery at CERN: January 2016
- 5 more machines will be delivered in May – Aug 2016

Interconnection of adjacent HICs

ITS Readout Unit v0

Interconnection of Pixel Chip to Flex PCB

A Large Ion Collider Experiment

Selective Laser Soldering

Laser soldering machine (Dr. Mergenthaler GMBH

Wire bonding

Isotropic Conductive Adhesive

A. Kluge

MFT – Muon Forward Tracker

Muon Forward Tracker

MFT Layout

896 silicon pixel sensors (0.4 m²) in 280 ladders of 1 to 5 sensors each.

FIT – Fast interaction trigger

FIT-T0/V0

• **TO**

Bundling of fibers on the sensor side

TOF

TOF GBTX Test Board

A. Kluge

MCH

MCH

DCS

- 17.000 FE cards (64 ch.) with 2 SAMPA ASIC each=> 1M channels
- 34.000 SAMPA ASIC (32 ch.)
- 550 GBTs links on SOLAR cards
- 25 CRUs

P. Dupieux

MID: front-end

- Goal: slow down RPC aging after LS2
- 2384 FE cards (+spares)
 - Present ASIC ADULT: no amplification
 - Future ASIC FEERIC (0.35 µm CMOS) with amplification
- FEERIC card pre-series on 1 (/72) RPC in cavern since Feb. 2015
 - Very satisfactory performance and stability
 - <u>Factor 4 less charge released in the</u> RPC gas with FEERIC (right plot)=> reduced aging
- Production test bench ready
 - Up to 4 FEERIC cards tested in parallel
 - Test of ASIC-alone prod. (x4000) early 2016

A. Kluge

MID: Read-out Electronics

- Continuous read-out
- Replacement of 234
 LOCAL and 16 REGIONAL
 cards presently in
 operation
- Readout card prototype
 ready

Summary

- Large number of detector or read-out is replaced
 - ITS & TPC & MFT: new concepts
- Continuous read-out
- Common solutions adopted