

Goal of High Luminosity LHC (HL-LHC):

- # implying an integrated luminosity of 250 fb⁻¹ per year,
 - # design oper. for μ δ 140 (→ peak luminosity 5 10³4 cm⁻² s⁻¹¾
 - Operation with levelled luminosity!
 - Ten times the luminosity reach of first 10 years of LHC operation!!

LHC Upgrade Goals: Performance

optimization

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, s_s)$$

→1) maximize bunch intensities

→ Injector complex

→2) minimize the beam emittance

Upgrade LIU

- →3) minimize beam size (constant beam power); → triplet aperture
- →4) maximize number of bunches (beam power); →25ns
- →5) compensate for 'F';

→ Crab Cavities

→6) Improve machine 'Efficiency'

→ minimize number of unscheduled beam aborts

LHC Limitations and HL-LHC Challanges:

- Technical bottle necks (e.g. cryogenics) → New addit. Equipment
- Insertion magnet lifetime and aperture:
 - \rightarrow New insertion magnets and low- β with increased aperture
- Geometric Reduction Factor: → SC Crab Cavities
 - → New technology and a first for a hadron storage ring!
- Performance Optimization: Pileup density
 Iuminosity levelling
 - → devise parameters for virtual luminosity >> target luminosity
- Beam power & losses → additional DS (cold region) collimators
- Machine effciency and availability:
 - # R2E -> removal of all electronics from tunnel region
 - # e-cloud → beam scrubbing (conditioning of surface)
 - # UFOs → beam scrubbing (conditioning of surface)

HL-LHC Upgrade Ingredients: Triplet Magnets

- Nominal LHC triplet: 210 T/m, 70 mm coil aperture
- → ca. 8 T @ coil
- → 1.8 K cooling with superfluid He (thermal conductivity)
- → current density of 2.75 kA / mm²
- At the limit of NbTi technology (HERA & Tevatron ca. 5 T @ 2kA/mm²)!!!

LHC Production in collaboration with USA and KEK

Critical Surface for NbTi

Oliver Brüning, CERN

HL-LHC technical bottleneck: Radiation damage to triplet magnets at 300 fb⁻¹

HL-LHC technical bottleneck: Radiation damage to triplet magnets Tungsten blocks

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnet coils receive a similar radiation dose @ 10 times higher integrated luminosity!!!!!

- Requires larger aperture!
- → 70mm at 210 T/m → 150mm diameter 140 T/m 8T peak field at coils → 12T field at coils!!!

HL-LHC Magnets

LHC triplet:

210 T/m, 70 mm bore aperture

- → 8 T @ coil (limit of NbTi tech.)
- HL-LHC triplet:

140 T/m, 150 mm coil aperture (shielding, β^* and crossing angle

- Requires Nb₃Sn technology
 - ceramic type material (fragile)
 - → ca. 25 year development for this new magnet technology!
- US-LARP CERN collaboration

Magnetic field (T)

US-LARP MQXF magnet design Based on Nb₃Sn technology

New Interaction Region lay out

Thick boxes are magnetic lengths -- Thin boxes are cryostats

HL-LHC Challenges: Crossing Angle

Parasitic bunch encounters:

Operation with ca. 2800 bunches @ 25ns spacing

→ approximately 30 unwanted collision per Interaction Region (IR).

→ Operation requires crossing angle

non-linear fields from long-range beam-beam interaction

efficient operation requires large beam separation at unwanted collision

points \rightarrow Separation of 10 -12 σ

ACES Workshop March 2016 returnes for HL-LHC upgrade!!

HL-LHC Upgrade Ingredients: Crab Cavities

- Geametricileuminosity
- Reduction Factor:
 geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Noise from cavities to beam?!?
- Challenging space constraints:
 - requires novel compact cavity design

Latest cavity designs toward accelerator

3 Advanced Design Studies with Different Coupler concepts

Double 1/4-wave:

RF Dipole: Waveguide

or

waveguide-coax

couplers

Concentrate on two designs in order to be ready for test installation in SPS in 2016/2017 TS

Coaxial couplers with

nt a

Present baseline: 4 cavity/cryomod TEST in SPS under preparation for 2017

And excellent first results: RF Dipole

Recent results from Measurements @ CERN

Testing Crab Cavities with Beams

Crab Cavity Test Installation in the SPS:

- Vital to gain feedback from operation with beam before launching of cavity production for HL-LHC → need results before LS2!!!
- Tight and ambitious schedule but doable!
- → Visualization and planning now
- → Preparation in EYETS 16/17
- → Installation YETS 17/18

→ vital for project to be able to launch Carb cavity production by LS2!!! (international partners!!!)

Cavities Cavities

Inrofiting of the EYETS 2016- 2017):

LHC Challenges: Beam Power

Unprecedented beam power:

Worry about beam losses:

Failure Scenarios → Local beam Impact

- → Equipment damage
- → Machine Protection

Lifetime & Loss Spikes → Distributed losses

- → Magnet Quench
- → R2E and SEU
- → Machine efficiency

Collimation Upgrade Plans for HL-LHC

- Collimation Upgrade Path for the HL-LHC:
- 2015 operation experience:
 - → up to 280MJ beam energy and no quench from beam losses

Quench test with beam:

$$E_{b-max} > 420MJ$$
, LHC_{nom} = 335MJ, HL-LHC = 630MJ

- → 11T DS collimators in IR7 (2 per beam → 4 units for LS2),
- → connection cryostat DS collimators in IR2 (2 units total)
- → mitigation in DS of IR1 & IR5 via orbit bumps
- Hollow e-lens: interesting for Halo depletion
 - → on path to Baseline

DS collimators - 11 T Dipole (LS2 -2018)

Prototyping of cryogenics bypass @ CERN

Prototyping of the by-pass crystostat (QTC) for the installation of a warm collimator in the cold dispersion

Magnet: prototypes reached 11 T field in March 2013!

R2E SEU Failure Analysis - Actions

2008-2011

- Analyze and mitigate all safety relevant cases and limit global impact
- **2011-2012**
 - Focus on equipment with long downtimes; provide shielding
- LS1 (2013/2014)
- Relocation of power converters
- LS1 LS2:
- Equipment Upgrades
- LS3 -> HL-LHC
 - Remove all sensitive equipment from underground installations

IR1 & IR5 Underground Civil Engineering:

Vibration Tolerances for Operation

Lessons from Civil Engineering Test Drills and Earth Quakes On Vibration Tolerances:

• Driven by worries about vibrations from the HL-LHC civil engineering

GEOTHERM2020

 a renewable energy
 production project by
 the Canton of Geneva

318.3

Vibration Tolerances for Operation

Lessons from Civil Engineering Test Drills and Earth Quakes On Vibration Tolerances:

• From Noise to Beam
In (ω)
H2 (ω)
H2 (ω)
H2 (ω)

H2 (ω)

H3 (ω)

Beam stability

- \rightarrow O(100) amplification to cold-mass for certain modes (H₀)
- \rightarrow O(10-100) attenuation H₁ and H₂
- → order of micrometer tolerance for vibrations!
- → Schedule that allows CE construction during LS2!!
- → Hollow electron lens for halo depletion!

ACES Workshop March 7th 2016

New Schedule: -> HL-LHC CE during

Shutdown/Technical sto
Protons physics
Commissioning
Ions

2024	2025	2026	2027	2028	2029	2030	2031	2032
J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D
LS3						LS4		

2033	2034	2035	2036	2037		
J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D		
	LS5					

Performance Projections up to HL-LHC:

- 3. For collimation we also need to change the DS in the continuous cryostat: 11T Nb₃Sn dipole
- 2. We also need to modify a large part of the matching section
- e.g. Crab Cavities &

- 1. New triplet Nb₃Sn required due to:
- -Radiation damage
- -Need for more aperture

- → More than 1.2 km of LHC!!
- → Plus technical infrastructure (e.g. Cryo and Powering)!!

Changing the triplet region is not enough for reaching the HL-LHC goal!

HL-LHC Baseline Parameters:

THE BUILD BUSSIN	io i ai ai			
Parameter Beam energy in collision [TeV] $L = \gamma \frac{f_{rev} n_b N_b^2}{4\pi \varepsilon_n \beta^*}$	Nominal LHC (design report)	HL-LHC 25ns (standard)	HL-LHC 25 ns (BCMS)	HL-LHC 50ns
Beam energy in collision [TeV] $L = \gamma$	<i>R</i> 7	$\overline{}$	7	7
N_b $4\pi \varepsilon_n \beta^*$	1.15E+11	2.2E+11	2.2E11	3.5E+11
n _b	2808	2748 ¹	2604	1404
Number of collisions at IP1 and IP5 ATS require	2808	2736	2592	1404
N _{tot}	3.2E+14	6.0E+14	5.7E+14	4.9E+14
beam current [A]	0.58	1.09	1.03	0.89
x-ing angle [µrad]	285	590	590	590
beam separation [σ]	9.4	12.5	12.5	11.4
β^* [m]	0.55	0.15	0.15	0.15
ε _n [μm]	3.75	2.50	2.50	3
ε _L [eVs]	2.50	2.50	2.50	2.50
r.m.s. energy spread	1.13E-04	1.13E-04	1.13E-04	1.13E-04
r.m.s. bunch length [m]	7.55E-02	7.55E-02	7.55E-02	7.55E-02
IBS horizontal [h]	80 -> 106	18.5	18.5	17.2
IBS longitudinal [h]	61 -> 60	20.4	20.4	16.1
Piwinski angle	0.65	3.14		2.87
Geometric loss factor R0 without crab-cavity	0.836	0.305	0.305	0.331
Geometric loss factor R1 with crab-cavity	(0.981)	0.829		0.838
beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	4.7E-03
beam-beam / IP with Crab cavity	3.8E-03	1.1E-02		1.4E-02
Peak Luminosity without crab-cavity [cm ⁻² s ⁻¹]	1.00E+34	7.18E+34	6.80E+34	8.44E+34
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	(1.18E+34)	19.54E+34	18.52E+34	21.38E+34
Events / crossing without levelling w/o crab-cavity	27	198	198	454
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5.00E+34	5.00E34	2.50E+34
Events / crossing (with levelling and crab-cavities for HL-LHC)	27	138	146	135
Peak line density of pile up event [evt/mm] (max over stable beam)	0.21	1.25	1.31	1.20
Levelling time [h] (assuming no emittance growth)	_	8.3	7.6	18.0

Reserve Transparencies

Eliminating Technical Bottlenecks Cryogenics P4- P1 -P5

High Luminosity LHC Participants

Implementation plan:

- PDR: Oct 2014; Ext. Cost & Schedule Review in Jan-Feb 2015;
- TDR: OCT 2015; TDR_v2 : 2017
- Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018)
- Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)
- Start construction 2018 for IT, CC & other main hardware
- IT String test (integration) in 2019-20; Main Installation 2023-25
- Though but based on LHC experience feasible

Project approval milestones:

- June 2010: launch of High Luminosity LHC
- November 2010 : HiLumi DS application to FP7
- November 2011: start FP7-HiLumi DS
- May 2013: approval of HL-LHC as 1st priority of EU-HEP strategy by CERN Council in Brussels
- May 2014: US P5 ranks HL-LHC as priority for DOE
- June 2014: CERN Council approves the financial plan of HL-LHC till 2025 (with an overall 10% budget cut)

LHC Challenges: Quench Protection

Magnet Quench:

- → beam abort → several hours of recovery
- HL LHC beam intensity: $I > 1 A => 7 \cdot 10^{14} \, \text{p}$ /beam
- Quench level: $N_{lost} < 7 \cdot 10^8 \text{ m}^{-1} \rightarrow < 10^{-6} N_{beam}!$

(compared to 20% to 30% in other superconducting rings)

- requires collimation during all operation stages!
- → requires good optic and orbit control! → Which we have
- → HL-LHC luminosity implies higher leakage demonstrated during Runl

from IP & requires additional collimators
ACES Workshop March 7th 2016 Oliver Brüning, CERN

FNAL: MBHSP01 – 1-in-1 Demonstrator (2 m)

40-strand cable fabricated using FNAL cabling machine

Coil fabrication

Collared coil assembly

Cold mass assembly

MBHSP02 passed 11 T field during training at 1.9 K

with I = 12080A on 5th March 2013!

LHC Upgrade Goals: Performance

optimization

Levelling:

- Luminosity limitation(s):
 - Even Pileup in detectors
 - Debris leaving the experiments and impacting in the machine (magnet quench protection)
 - Triplet Heat Load

LHC low-β quads: steps in magnet technology from LHC toward HL-LHC

The HL-LHC Nb-Ti magnet zoo...

In-kind contribution and Collaboration for HW design and prototypes

Q1-Q3 : R&D, Design, Prototypes

and in-kind USA

D1 : R&D, Design, Prototypes

and in-kind JP

MCBX : Design and Prototype ES

HO Correctors: Design and

Prototypes IT

Q4 : Design and Prototype FR

CC : R&D, Design and in-kind **USA** | CC : R&D and Design **UK**

ACES Workshop March 7th 2016

Oliver Brüning, CERN

3 Crab Cavity prototypes:

Scrubbing with 25ns: Heat Load Evolution

