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Goal of High Luminosity LHC (HL-LHC):

The main objective of HiLumi LHC Design Study is to determine a hardware 

configuration and a set of beam parameters that will allow the LHC to reach the 

following targets:

Prepare machine for operation beyond 2025 and up to 2035

Devise beam parameters and operation scenarios for:

# enabling at total integrated luminosity of 3000 fb-1

# implying an integrated luminosity of 250 fb-1 per year, 

# design oper. for  140 ( peak luminosity 5 1034 cm-2 s-1)

 Operation with levelled luminosity!
 Ten times the luminosity reach of first 10 years of LHC 

operation!!

5 events
400 

events
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Luminosity recipe (round beams): 

1) maximize bunch intensities

2) minimize the beam emittance

3) minimize beam size (constant beam power); 

4) maximize number of bunches (beam power); 

5) compensate for ‘F’; 

6) Improve machine ‘Efficiency’

LHC Upgrade Goals: Performance 

optimization

L =
nb ×N1 ×N2 ×g × frev

4p × b* ×en
×F(f, b*,e,s s )

Injector complex 

Upgrade LIU

triplet aperture

25ns

Crab Cavities

minimize number of 

unscheduled beam 

aborts
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 Technical bottle necks (e.g. cryogenics)

 Insertion magnet lifetime and aperture:

 New insertion magnets and low-b with increased aperture

 Geometric Reduction Factor:  SC Crab Cavities 
 New technology and a first for a hadron storage ring!

 Performance Optimization: Pileup density  luminosity 
levelling

 devise parameters for virtual luminosity >> target luminosity

 Beam power & losses  additional  DS (cold region) 
collimators

 Machine effciency and availability:
# R2E  removal of all electronics from tunnel region

# e-cloud  beam scrubbing (conditioning of surface)

# UFOs  beam scrubbing (conditioning of surface)

LHC Limitations and HL-LHC Challanges:

 New addit. Equipment
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 Nominal LHC triplet: 210 T/m, 70 mm coil aperture

 ca. 8 T @ coil

 1.8 K cooling with superfluid He (thermal conductivity)

 current density of 2.75 kA / mm2

 At the limit of NbTi technology (HERA & Tevatron ca. 5 T @ 2kA/mm2)!!!

Critical Surface for NbTi

HL-LHC Upgrade Ingredients: Triplet Magnets

LHC Production in collaboration with USA and KEK
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HL-LHC technical bottleneck:

Radiation damage to triplet magnets  at 300 fb-1

 0

 5

 10

 15

 20

 25

 30

 20  25  30  35  40  45  50  55

p
e
a
k

 d
o

se
 [

M
G

y
 /

 3
0
0
 f

b
-1

]

distance from IP [m]

peak dose longitudinal profile

7+7 TeV proton interactions
IT quadrupoles

MCBX-1
MCBX-2

MQSX
MCTX nested in MCBX-3

MCSOX

Q2

27 

MGy

MCBX

3 20 

MGy

Cold bore 

insulation

≈ 35 MGy

6



Oliver Brüning, CERNACES Workshop March 7th  2016

HL-LHC technical bottleneck:

Radiation damage to triplet magnets

 Requires larger aperture!

 70mm at 210 T/m 150mm diameter 140 T/m

8T peak field at coils  12T field at coils!!!

Need to replace existing triplet 

magnets with radiation hard system 

(shielding!) such that the new 

magnet coils receive a similar 

radiation dose @ 10 times higher 

integrated luminosity!!!!!

Tungsten blocks

Capillaries
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 LHC triplet: 

210 T/m, 70 mm bore aperture

 8 T @ coil (limit of NbTi tech.)

1.8K

US-LARP MQXF 
magnet design
Based on 
Nb3Sn
technology

• Requires Nb3Sn technology

 ceramic type material (fragile)

 ca. 25 year development for this

new magnet technology!

• US-LARP – CERN collaboration

• HL-LHC triplet: 

140 T/m, 150 mm coil aperture

(shielding, b* and crossing angle)

 ca. 12 T @ coil  30% longer

HL-LHC Magnets:
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New Interaction Region lay out

LHC

HL LHC

20 30 40 50 60 70 80

distance to IP (m) 

Q1 Q3Q2a Q2b

M
C

B
X

M
C

B
X

M
C

B
X

CP D1

Q: 140 T/m

MCBX: 2.1 T    2.5/4.5 T m

D1: 5.2 T          35 T m

4.0 4.0 4.0 4.06.8 6.8 6.71.2 1.2 2.2

SM

20 30 40 50 60 70 80
distance to IP (m) 

Q1 Q3Q2a

M
C

B
X

D1
M

C
B

X

M
C

B
X

Q2b

Q: 200 T/m

MCBX: 3.3 T    1.5 T m

D1: 1.8 T           26 T m

DFB

Thick boxes are magnetic lengths -- Thin boxes are cryostats

Longer Quads; Shorter D1 (thanks

to SC)

ATLA

S

CMS

ATLA

S

CMS

9



Oliver Brüning, CERNACES Workshop March 7th  2016

HL-LHC Challenges: Crossing Angle

Parasitic bunch encounters:

non-linear fields from long-range beam-beam interaction:

 Operation requires crossing angle

efficient operation requires large beam separation at unwanted collision 

points   Separation of 10 -12 s

 large triplet apertures for HL-LHC upgrade!! 

Insertion Layout:
ca.130m

ca.50m

Operation with ca. 2800 bunches @ 25ns spacing 

 approximately 30 unwanted collision per 

Interaction Region (IR).
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HL-LHC

Geometric Luminosity 

Reduction Factor:

F =
1

1+Q2
;    Q º

qcs z

2s x

effective cross section

   

b*

F(b*)

• Reduces the effect of 

geometrical reduction factor 

• Independent for each IP

• Noise from cavities to 

beam?!?

• Challenging space 

constraints:

 requires novel compact 

cavity design

Crab Cavities:

HL-LHC Upgrade Ingredients: Crab Cavities

LHC
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Latest cavity designs toward accelerator 

RF Dipole: Waveguide 

or

waveguide-coax 

couplers
Double ¼-wave: 

Coaxial couplers 

with

hook-type antenna

4-rod: Coaxial couplers with 

different antenna types

3 Advanced Design Studies with 

Different Coupler concepts

Concentrate on two designs in order to be ready

for test installation in SPS  in 2016/2017 TS

Present baseline: 4 cavity/cryomod

TEST in SPS under preparation for 2017
12



Oliver Brüning, CERNACES Workshop March 7th  2016

And excellent first results: RF Dipole 
Recent results from Measurements @ CERN

3.5

Initial goal was 
3.5 MV
however 
V > 5-6 MV 
would ease 
integration
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Cable and 

pipework 

length:

~150-200m

65m

Cold-box

+SPS fire safety

200m2

Crab Cavity Test Installation in the SPS: 
• Vital to gain feedback from operation with beam before launching of

cavity production for HL-LHC  need results before LS2!!!

• Tight and ambitious schedule

but doable!

 Visualization and planning now

 Preparation in EYETS 16/17

 Installation YETS 17/18

  vital for project to be able to launch 

 Carb cavity production by LS2!!!

 (international partners!!!)

Testing Crab Cavities with Beams
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SPS beam test: a critical step for Crab 

Cavities
(profiting of the EYETS 2016- 2017):
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LHC Challenges: Beam Power

Unprecedented beam power:

 potential equipment 

damage in case 

of failures 

during 

operation

 In case of 

failure the 

beam must 

never reach 

sensitive 

equipment!

Stored Beam power:

HL-LHC > 500 MJ / 

beam

Worry about beam losses:

Failure Scenarios  Local beam Impact

 Equipment damage 

 Machine Protection

Lifetime & Loss Spikes  Distributed losses

 Magnet Quench

 R2E and SEU

 Machine efficiency
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Collimation Upgrade Path for the HL-LHC: 
• 2015 operation experience: 

 up to 280MJ beam energy and no quench from beam losses

Quench test with beam:

Eb-max > 420MJ, LHCnom = 335MJ, HL-LHC = 630MJ

 11T DS collimators in IR7 (2 per beam  4 units for LS2),  

 connection cryostat DS collimators in IR2 (2 units total)

 mitigation in DS of IR1 & IR5 via orbit bumps 

• Hollow e-lens: interesting for Halo depletion 

 on path to Baseline

Collimation Upgrade Plans for HL-LHC
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DS collimators – 11 T Dipole (LS2 -2018)

MB.B8R/L

MB.B11R/L

11 T Nb3Sn

18



Oliver Brüning, CERNACES Workshop March 7th  2016

Prototyping of cryogenics bypass @ CERN

Prototyping of the by-pass crystostat (QTC) for the 

installation of a warm collimator in the cold dispersion 

suppressors.Magnet: prototypes reached 11 T field in March 2013!

19



Oliver Brüning, CERNACES Workshop March 7th  2016 20

R2E SEU Failure Analysis - Actions

 2008-2011
 Analyze and mitigate all safety 

relevant cases and limit global 

impact

 2011-2012
 Focus on equipment with long 

downtimes; provide shielding

 LS1 (2013/2014)
 Relocation of power converters

 LS1 – LS2:
 Equipment Upgrades

 LS3 -> HL-LHC
 Remove all sensitive equipment 

from underground installations 

~400 h

Downtime

~250 h

Downtime

Relocation

& Shielding

Equipment 

Upgrades
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IR1 & IR5 Underground Civil Engineering:

P. Fessia, HL-LHC TDR
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Lessons from Civil Engineering Test Drills and Earth Quakes

On Vibration Tolerances:
• Driven by worries about vibrations from the HL-LHC civil engineering

• GEOTHERM2020

a renewable energy 

production project by 

the Canton of Geneva

Vibration Tolerances for Operation
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Lessons from Civil Engineering Test Drills and Earth Quakes

On Vibration Tolerances:
• From Noise to Beam

 O(100) amplification to cold-mass for certain modes (H0)

 O(10-100) attenuation H1 and H2

 order of micrometer tolerance for vibrations!

 Schedule that allows CE construction during  LS2!!

 Hollow electron lens for halo depletion!

In (ω) Out (ω)H1 (ω) H0 (ω)

Beam stability

H2 (ω)

H1 (ω)

H2 (ω)

H0 (ω)

Vibration Tolerances for Operation
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New Schedule:  HL-LHC CE during 

LS2

24
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Splices 
fixed

Injectors
upgrade

25 fb-1 3000 fb-1

300 fb-1

0.75 1034 cm-2s-1

50 ns bunch
high pile up 40

1.5 1034 cm-2s-1

25 ns bunch 
high pile up 

40

e-cloud 
UFOs!

Run I Run II Run III
New

Low-β*
quads

LI
U

 

1.5 -2.2  1034

cm-2s-1

25 ns bunch 
very high 

pile up > 60

Technical limits 
(in experiments, 

too) like :

Cryogenic limit, Radiation & 
Damage of triplet magnets

5 1034 cm-2s-1

levelled
25 ns bunch 

very high pile 
up 140

Performance Projections up to HL-LHC:

Crab
Cavity

Phase2

1000 fb-1

Energy
6.5TeV

Intensity
Upgrade
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The critical zones around IP1 and IP5

ATLA

S

1. New triplet Nb3Sn

required due to:

-Radiation damage

-Need for more 

aperture

Changing the triplet 

region is not enough for 

reaching the HL-LHC 

goal!

2. We also need to 

modify a large part 

of the  matching 

section

e.g. Crab Cavities & 

D1, D2, Q4 & 

corrector

3. For collimation we 

also need to change the 

DS in the continuous 

cryostat: 11T Nb3Sn 

dipole

CMS

 More than 1.2 km of LHC !!

 Plus technical infrastructure 

(e.g. Cryo and Powering)!!
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Parameter

Nominal LHC​ 

(design 

report)

HL-LHC 25ns 

(standard)​

HL-LHC 25 ns
(BCMS)

HL-LHC 

50ns

Beam energy in collision [TeV] 7 7 7 7

Nb 1.15E+11 ​2.2E+11 2.2E11 3.5E+11

nb ​2808 ​27481 2604 ​1404

Number of collisions at IP1 and IP5 2808 2736 2592 1404

Ntot 3.2E+14 6.0E+14 5.7E+14 4.9E+14

beam current [A] ​0.58 1.09 1.03 0.89

x-ing angle [μrad]​ 285 590 590 590

beam separation [σ] 9.4 12.5 12.5 11.4

β* [m] 0.55 ​0.15 0.15 ​0.15

εn [μm]​ 3.75 ​2.50 2.50 3

εL [eVs]​ 2.50 2.50 2.50 2.50

r.m.s. energy spread​ 1.13E-04 1.13E-04 1.13E-04 1.13E-04

r.m.s. bunch length [m] 7.55E-02 7.55E-02 7.55E-02 7.55E-02

IBS horizontal [h] ​80 -> 106 18.5 18.5 17.2

IBS longitudinal [h] 61 -> 60 20.4 20.4 16.1

Piwinski angle 0.65 3.14 3.14 2.87

Geometric loss factor R0  without crab-cavity 0.836 0.305 0.305 0.331

Geometric loss factor R1 with crab-cavity (0.981) 0.829 0.829 0.838

beam-beam / IP without Crab Cavity 3.1E-03 ​3.3E-03 ​3.3E-03 4.7E-03

beam-beam / IP with Crab cavity 3.8E-03 1.1E-02 1.1E-02 1.4E-02

Peak Luminosity without crab-cavity [cm-2 s-1] 1.00E+34 7.18E+34 6.80E+34 8.44E+34

Virtual Luminosity with crab-cavity: Lpeak*R1/R0   [cm-2 s-1] (1.18E+34) 19.54E+34 18.52E+34 21.38E+34

Events / crossing without levelling w/o crab-cavity ​27 198 198 454

Levelled Luminosity [cm-2 s-1] - 5.00E+34 5.00E34 2.50E+34

Events / crossing (with levelling and crab-cavities for HL-LHC) 27 138 146 135

Peak line density of pile up event [evt/mm] (max over stable beam) 0.21 1.25 1.31 1.20

Levelling time [h] (assuming no emittance growth) - 8.3 7.6 18.0 27

HL-LHC Baseline Parameters:

ATS required
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Reserve Transparencies
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Eliminating Technical Bottlenecks

Cryogenics P4- P1 –P5
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New 18 kW 

Plants in P1 and 

P5 (LS3)
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High Luminosity LHC Participants

30
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Implementation plan:

 PDR: Oct 2014 ;  Ext. Cost & Schedule Review in Jan-Feb  2015; 

 TDR: OCT 2015; TDR_v2 : 2017

 Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018)

 Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)

 Start construction 2018 for IT, CC & other main hardware

 IT String test (integration) in 2019-20; Main Installation 2023-25

 Though but – based on LHC experience – feasible
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Project approval milestones:

 June 2010: launch of High Luminosity LHC

 November 2010 : HiLumi DS application to FP7

 November 2011: start FP7-HiLumi DS

 May 2013: approval of HL-LHC as 1st priority of EU-

HEP strategy by CERN Council in Brussels

 May 2014: US P5 ranks HL-LHC as priority for DOE

 June 2014: CERN Council approves the financial 

plan of HL-LHC till 2025 (with an overall 10% budget 

cut)
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LHC Challenges: Quench 

Protection
Magnet Quench:

Quench level: Nlost < 7 108 m-1

 requires collimation during all operation stages!

 requires good optic and orbit control!

 HL-LHC luminosity implies higher leakage

from IP & requires additional collimators 

 beam abort  several hours of recovery

HL LHC beam intensity:   I > 1 A  => > 7 1014 p /beam

 < 10-6 Nbeam!

(compared to 20% to 30% in other superconducting rings)

33

 Which we have

demonstrated

during RunI
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FNAL: MBHSP01 – 1-in-1 Demonstrator (2 m)

40-strand cable fabricated using FNAL cabling machine

Coil fabrication Collared coil assembly Cold mass assembly

34

MBHSP02 passed 11 T field during training at 1.9 K 

with I = 12080A on 5th March 2013!
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 Levelling:

 Luminosity limitation(s):
 Even Pileup in detectors

 Debris leaving the experiments and impacting in the machine 

(magnet quench protection)

 Triplet Heat Load

LHC Upgrade Goals: Performance 

optimization
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LHC low-β quads: steps in magnet technology from 

LHC toward HL-LHC 

LHC (USA & JP, 5-6 m)

70 mm, Bpeak 8 T

1992-2005

LARP TQS & LQ (4m)

90 mm, Bpeak 11 T

2004-2010

LARP HQ

120 mm, 

Bpeak 12 T

2008-2014

LARP & CERN

MQXF

150 mm, 

Bpeak 12.1 T

2013-2020

New structure 

based on 

bladders and 

keys (LBNL, 

LARP)
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The HL-LHC Nb-Ti magnet zoo…

D1 (KEK) Nested Orbit corrector (CIEMAT) HO correctors: superferric (INFN)

D2 (INFN) Q4 (CEA) D2 corr
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In-kind contribution and Collaboration for HW 

design and prototypes

Q1-Q3 : R&D, Design, Prototypes 

and in-kind USA

D1 : R&D, Design, Prototypes 

and in-kind JP

MCBX : Design and Prototype ES

HO Correctors: Design and 

Prototypes IT

Q4 : Design and Prototype FR

CC : R&D, Design and in-kind USA CC : R&D and Design UK

ATLAS

CMS
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3 Crab Cavity prototypes:

4-rod in SM18 for RF 

measurements 

[Lancaster UK]

4-rod prepared for 

rinsing @ CERN
RF-Dipole Nb prototype [ODU-

SLAC]

DQWR prototype 

(17-Jan-2013) [BNL]
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M. Giovannozzi @ LMC – September 

30st

40

Conditioning?

Scrubbing with 25ns: Heat Load Evolution

Steady (slow) 

conditioningGianni Iadarola and e-cloud team


