

CMS-ECAL barrel upgrades for HL-LHC

Legacy system

- OMFOCIARY at the LHC, CERN
- Expected performances at LS3
- Upgrade constraints
 - Bounding conditions
 - Aging mitigation
 - Trigger constraints
 - Spike rejection
 - New features

Upgrade scenarios

- On-going R&D
 - VFE
 - LV
 - FE

Planning

Marc Dejardin Irfu/SPP CEA-Saclay

Legacy system

- Modularity
 - 25 channels = 1 Readout unit
- Features
 - Trigger primitive generation
 - **►** Trigger tower = 5x5 crystals
 - Pipeline, Event buffer in FE
 - **▶** 5 us
 - ► Full readout at L1-accept
 - ► Max 100 kHz trigger rate

APD1: G=50

PD1

PD2

APD2; G=50

PWO crystal 4p.e. / MeV to APD pair

Low voltage regulator board – 10 linear rad tol regulators

OuadADC (5x)

ADC

VFE card (5x)

3 gain MGPA

(5x)

By LS3

Spike rejection

- Noise
 - Evolution assuming present VFE design

- Spike rejection @L1 (direct energy deposition in APD)
 - **Online rejection= O(95%)(2012)**
 - Sensitive to PU & APD I_{leak}

Upgrade requirements

- Installation completed during LS3
- Comply to new trigger requirements
 - 12.5 μs latency (5 μs today)
 - 750 kHz L1 rate (100 kHz today)
- Mitigate spikes signals
 - Expect ~1 spike /bunch crossing
- Mitigate APD radiation damage
 - APD leakage current up to 200uA
 - ► Parallel noise increase /Worsen the spike signal tagging

- Mitigate Pileup
 - Out-of-time
 - In-time
- Maintain/Improve system reliability
 - Failure mitigation scheme

- All in one :
 - Try to restore initial ECAL performances

Boundary conditions

- Keep the mechanical structure as-is
 - Cooling system
 - Mother boards
 - Signal paths and connectors

You have to plug here!

- Use back-end complying to CMS standard
 - e.g.: x-TCA

You have to read-out here!

Upgrade concepts

- Put all algorithmic in OD electronics
 - Trigger-less FE
- Single crystal information available at L1
 - Synchronous readout of all crystal information
 - **►** Improve trigger efficiency
 - **▶** Correlation with tracker info
- Reduce ECAL working temperature
 - 8 °C instead of 18 °C
 - ► APD Leakage current /2

► Light yield +30%

- Reduce signal shaping time
 - Decrease parallel noise contribution
 - ► Goes like $\sqrt{\tau}$
 - Improve OOT pileup mitigation

The way to go

- Don't reinvent the wheel
 - Use common developments as much as possible
 - **▶** DC-DC converters
 - **▶** Optical links (lpGBT)

- **▶** Off detector electronics
 - Common development with HGCAL, HB?
 - Efficient calorimeter trigger generation

- Concentrate efforts on ECAL specific features
 - Optimize APD signal reconstruction
 - ► Mitigate leakage current increase
 - **▶** Improve spike signal mitigation
 - ► Improve pileup mitigation → Add timing information

APD signal conditioning

• Reminder:

- Shaping as short as possible
 - **▶** Decrease parallel noise (APD leakage current mitigation)
 - ► Mitigate OOT pileup

Options:

- CR-RC shaper MGPA-like
 - ► Reduced shaping time
 - e.g: $\tau_{CR-RC} \sim 20$ ns (~40 ns in legacy system)
 - ► Trade-off with ballistic deficit
- Trans-impedance amplifier (TIA)
 - ► Shaping defined by TIA bandwidth (<50 MHz)
 - ► Hopefully more information on signal at high frequency
- Gated charge integrator (GQI)
 - ► Enhanced version of QIE
 - resolution/radiation hardness

Example: TIA R&D

(P. Baron Irfu/SEDI CEA-Saclay)

- Design of TIA asic in TSMC 130 nm technology
 - Specifications :
 - ightharpoonup C_{det}=200 pF, I_{leak} from 10 uA to 100 uA
 - ightharpoonup E = 2 TeV, E = 100 MeV, 2 outputs : G1 and G10
 - ► Bandwidth <50 MHz
- Intended target

 ASIC

 Gain1: range 0 -2 TeV

 ADC 12 bits
 120/160 MSPS

 ADC 12 bits
 120/160 MSPS

 Filter

 Vout

 Transimpedance

 ZT = Vout/Idet [Ω]

 ADC 12 bits
 120/160 MSPS

Prototype

TIA architecture and performances (sim.)

Regulated common gate Low input impedance

Dynamics

Noise

G1 and G10 outputs performances (sim.)

11

System performances (sim.)

Connect TIA to ECAL barrel

Add connection strip lines (a.k.a. kaptons)

Kapton Line parameters: $R = 0.05 \Omega/cm$; L = 3.75 nH/cm; C = 2.4 pF/cmLength: 20 - 30 cm

Deal with 75-100 nH connections

Drawback:

Noise \uparrow (Ileak = 0 μ A); Bandwith \downarrow ; Timing \downarrow But:

Noise \downarrow (Ileak > 10-20 μ A) since Bandwith \downarrow

System performances Worse conditions: End of HL-LHC (sim.)

13

Timing resolution

Spike/scint separation @ 2GeV

• G1 noise

• G10 noise

March 9th 2016

I_{leak} [μA]

ACES 2016

APD signal digitization

HL-LHC

- Prepare for best online and offline analysis
 - **Provide enough information for**
 - ► Online spike tagging
 - Shape analysis
 - **Timing measurement**
 - Offline energy reconstruction with Pileup

• Multifit algorithm

0.8

- ► Benefits/costs of 80/160 MHz sampling
 - System performances gain
 - ADC design/cost
 - Data rate/volume

Ongoing work

- Investigating use of commercial ADC core
- Check DC/DC converters compatibility with ECAL and CMS
 - Magnetic field
 - Induced noise on legacy system
- Get experience with GBT links
 - Upgraded FE board for legacy system
- Prepare test beam campaign to check working hypothesis
 - Prototype VFE with op-amp TIA
 - **▶** Check APD noise model, Ultimate timing resolution

Forthcoming major milestones

- Summer 2016: First Comprehensive Review
 - Evaluate concepts of VFE upgrade
- Q3 2017: Technical Design Report (TDR)
 - Evaluate technical specifications and expected performances of VFE, LVR, FE
 - Evaluate feasibility of SM cooling
 - Evaluate trigger strategy and online/offline performances
- Q3 2019: Engineering Design Report (EDR)
 - Technical validation of VFE, LVR and FE prototypes
- Q1 2021: Electronic System Review (ESR)
 - Assess readiness for production

Conclusions

- CMS barrel calorimeter upgrades project well defined
- Ambitious upgrade program
 - Recover ECAL performances after 10 years of running
 - Prepare detector for a new decade of data taking
 - Read enough information from detector to be versatile
 - Export all algorithms to back-end electronics
 - ► Freedom to tune algorithm to follow detector aging
 - ► Adapt to unforeseen "features"
- Rely on development from third party
 - DC-DC converters
 - lpGBT

Backup

CMS ECAL Barrel Anomalous events: **Spikes**

Hadrons interacting with the APD's causing anomalous high E deposits

Hadrons come from primary interaction and backsplash

Spike rates

- L1 Spike rejection in 2012 O(95%)
 - Rate sustainable up to LS3 with somewhat raised channel threshold
- Legacy Spike Rejection Algorithm is sensitive to PU (see plot ->)
- Exploring improvements having access to full granularity of data in the trigger path
 - Single crystal readout
- Exploring pulse-shape variables to provide an additional efficiency/rejection safety margin
 - Analogue Signal Processing

Data rate

- Hypothesis :
 - Oversampling @ 160 MHz
- 12 bits + 2 gains = 13 bits/sample
 - 10.4 Gb/s per VFE board
 - **▶** Above GBT capabilities
- 11 bits + 2 gains = 12 bits/sample
 - 9.6 Gb/s per VFE board
 - ► At the edge of GBT capabilities
- 12 bits + 2 gains
 - + digital compression (LUT)
 - = 11 bits/sample
 - 8.8 Gb/s per VFE board
 - ▶ Fit in 1 GBT link

ompression LUT

1024 1536 2048 2560

Timeline of High Level Milestones

- **Q2 2016:** VFE.HL.2016.1: Draft initial VFE ASIC specifications
- Q4 2016:LVR.HL.2016.1: Demonstrate feasibility of EB electronics with DC/DC convertors instead of LV regulators
 - VFE.HL.2016.2: Define final VFE ASIC specifications commence design
- Q1 2017: FE.HL.2017.1: First FE demonstrator with 5 Gb/s links
- Q3 2017: REV.HL.2017.1: Technical Design Report
 - LVR.HL.2017.1: Test beam appraisal of LVR board benchmark performance
- **Q1 2018:** VFE.HL.2018.1: First prototype of VFE board available with new ASICs
- Q1 2019: FE.HL.2019.1: First FE prototype with 10 Gb/s links
 - LVR.HL.2019.1: Final validation of LVR board demonstrate performance
- Q3 2019: VFE.HL.2019.1: Validation of overall concept (VFE+FE+LVR)
 - **REV.HL.2019.1: Engineering Design Report**
- Q2 2020: VFE.HL.2020.1: Accelerated ageing and radiation exposure of all 3 boards OD.HL.2020.1: Validation of OD readout design
- Q4 2020: VFE.HL.2020.2: Test-beam verification of all components in SM, at lower temperature.
- **Q1 2021: REV.HL.2021.1: Electronics Systems Review** (readiness for production)

