Developments for serial power applications

Laura Gonella
Report on RD53 powering working group
ACES workshop
08/03/2016
Introduction

- R&D on serial powering ongoing for more than 10 years in ATLAS

- Leading institutes
 - Uni Bonn for pixels
 - RAL, UPenn, BNL for strips

- Serial powering proven to be a feasible and reliable powering scheme for trackers at the HL-LHC

- The current scalability brings significant advantages in terms of material reduction and power efficiency

→ Serial powering is the baseline powering scheme for pixel detectors at the HL-LHC (ATLAS and CMS)
RD53 powering working group

- RD53 established a powering working group in 2015
- Main focus of the group is twofold
 - Input and discussions with chip designers about powering aspects for the future pixel chips in 65nm
 - Exchange of experiences and concepts with powering schemes between the different experiments, esp. serial powering but not exclusively
- Meetings are quarterly
 - 2 meetings in 2015 plus a special meeting on serial powering simulations in 2016
Serial powering configurations

- **In module SP**
 - Each module builds its own SP chain
 - Independent module power as in voltage based powering schemes
 - Number of chips in module defines the reduction factor n
 - Sensor connected to a few volts different ground

- **Across module SP**
 - SP chain made of n modules defined by design of local support structures (ATLAS pixels: up to $n = 8 – 10$)
 - Modules/sensors grounds differ inside the SP chain
 - Option investigated so far by ATLAS pixels

Figure from J. Christiansen
Enabling technologies

- **Shunt-LDO regulator**
 - 2 integrated in the FE-I4 chip

- **Redundancy** and module bypass
 - Parallel connection of all regulators on module
 - PSPP chip as part of DCS system

- **AC-coupling**
 - FE-I4 cmd and data DC-balanced
 - Self-biased FE-I4 RX inputs

- **HV distribution concepts** with return referenced to local module ground via high resistive path, or to current return

08/03/16

laura.gonella@cern.ch
Shunt-LDO regulator

- Idea and design by M. Karagounis (Hochschule Hamm-Lippstadt)

- Voltage regulation loop (LDO) \Rightarrow constant $V_{out} = 2V_{ref}$

- Current regulation loop (shunt) \Rightarrow keeps current through the regulator constant

- Ohmic input characteristics $R_{in} \approx \frac{V_{in}}{I_{in}} \approx \frac{R_3}{k}$

- Shunt-LDO features
 - Robust design against process variation and mismatch for safe parallel operation
 - Parallel operation of regulators with different output voltages and shunting capabilities possible
 - Ability to shunt extra current
 - Different working modes for current and voltage based powering
Upcoming: shunt-LDO prototype in 65nm

- 1:1 copy of the design of the Shunt-LDO in FE-I4 (not yet designed for 65nm chip specs)
- Submitted last week

Testchip – Size
2 mm x 2 mm

Testchip - Content
3 regulator incl. biasing

Pad – Count
4 x 16 with 100 µm pitch

Area per Regulator:
800 µm x 400 µm

Pads per Regulator:
5 x input current
5 x shunt current
5 x output voltage
1 x reference voltage
1 x biasing voltage
1 x internal resistor con.
1 x external resistor con.
1 x shunt-circuitry supply
Pixel Serial Powering Protection (PSPP) chip

- Work done at Uni Wuppertal, design by L. Puellen
- Module bypass scheme integrated into DCS system
- PSPP chip loaded on module flex, connected in parallel to the module
- Features:
 - Autonomous fault detection
 - Addressable power control to switch on/off selected modules
 - ADC could be used to measure HV, sensor leakage current, temperature
- PSPP chip services: I2C and power → 3 lines per SP chain
- Two prototypes already existing → working principle demonstrated

Figure from L. Puellen
Serial powering systems with FE-I4

- Several serial powering systems are in operation/development to study system aspects
 - Uni Bonn: 6 FE-I4 quad modules on a stavelet, partially equipped with PSPP chips
 - LBNL: 3 FE-I4 quad modules on a stavelet
 - Uni Liverpool: 4 FE-I4 quad modules on PCBs in one SP chain
 - Uni Glasgow and INFN Florence: SP chain of FE-I4 single chip modules on PCBs
 - More systems in preparation at CERN and Uni Oklahoma

- Overall performance is good, no significant differences observed with respect to voltage based powering schemes
Serial powering stavelet in Bonn

DCS power

USBPix power

Quad module

Stavelet

HV

I source

End-Of-Stave

DCS master and services

USBPix3.0

LBNL adapter PCB

PSPP chip

All measurements and plots in the following slides done by V. Filimonov

08/03/16

laura.gonella@cern.ch
Minimum threshold operation

- Starting point: 6 quad modules tuned to standard threshold values (i.e. 1500e⁻ threshold, 10TOT @16ke⁻)

- Lower the global threshold (GDAC) in steps

- At each step
 - Perform noise occupancy scan (10⁷ triggers, 25ns each)
 - Mask pixels with a noise hit probability (NOcc) > 10⁻⁷

- When the number of masked pixels reaches 1% stop the scan
 - Leave the FE noisy and continue with the other FEs
 - Increase the global threshold (GDAC +1) and continue with the other FEs
Results of minimum threshold searches

- FEs can be operated at thresholds as low as ~800e-
- Noisy FEs in the chain do not affect the performance of the other FEs
Improved minimum threshold search

- Starting point: 6 quad modules tuned to standard threshold values (i.e. $1500e^-$ threshold, 10TOT @16ke$^-$)

- Lower the global threshold (GDAC) in steps

- At each step, tune the local threshold (TDAC), i.e. increase the threshold of noisy pixels
 - Perform noise occupancy scan (10^7 triggers sent, 25ns each)
 - Mask pixels with NOcc > 10^{-7} or TDAC at maximum

- When the number of masked pixels reaches 1% stop the scan

- Increase the global threshold (GDAC +1) and continue with the other FEs
Results of improved minimum threshold searches

- FEs can be operated at thresholds below \(~800\text{e}^\text{-}\), down to \(~600\text{e}^\text{-}\)
Results of improved minimum threshold searches

Vthin_AltFine vs Number of Noisy Pixels

Stop condition: 1% of pixels noisy

Threshold for standard tuning ~100
(≈ 1500 e⁻)
2-trigger scan: influence on NOcc

- Starting point: 6 quad modules tuned to minimum threshold

- Command pattern
 - Trigger multiplicity = 1
 - Long fix delay between repetitions

Trigger

Variable Delay
Up to 1500 BCIDs

Trigger

Long Fixed Delay
10000 BCIDs

Standard Noise Occupancy scan
2-trigger scan: influence on NOcc

- No increase in the number of noisy pixels wrt. standard operation
- Lowest delay between triggers ~45BC. For lower values data errors needs to be investigated (observed also on direct power module)
Conclusion

- Powering for pixel detectors at the HL-LHC is challenging!

- Current ideas are based on long experience with serial powering of ATLAS pixel modules
 - Enabling technologies like shunt-LDO, module bypass scheme, AC-coupling data transmission etc. already developed and integrated in ATLAS pixel modules
 - Successfully built serial powered pixel systems based on FE-I3 and FE-I4 with similar performance as parallel powered systems

- More work needed in many areas (esp. off-stave)
 - Complete definition of the entire pixel powering scheme
 - Modularity, i.e. size of SP chains
 - Power, voltage and current requirements of chips resp. modules
 - Grounding and shielding concepts