Developments for serial power applications

Laura Gonella
Report on RD53 powering working group
ACES workshop
08/03/2016

Introduction

- R&D on serial powering ongoing for more than 10 years in ATLAS
- Leading institutes
 - Uni Bonn for pixels
 - RAL, UPenn, BNL for strips
- Serial powering proven to be a feasible and reliable powering scheme for trackers at the HL-LHC
- The current scalability brings significant advantages in terms of material reduction and power efficiency
 - → Serial powering is the baseline powering scheme for pixel detectors at the HL-LHC (ATLAS and CMS)

RD53 powering working group

- RD53 established a powering working group in 2015
- Main focus of the group is twofold
 - Input and discussions with chip designers about powering aspects for the future pixel chips in 65nm
 - Exchange of experiences and concepts with powering schemes between the different experiments, esp. serial powering but not exclusively
- Meetings are quarterly
 - 2 meetings in 2015 plus a special meeting on serial powering simulations in 2016

Serial powering configurations

In module SP

- Each module builds its own SP chain
- Independent module power as in voltage based powering schemes
- Number of chips in module defines the reduction factor n
- Sensor connected to a few volts different ground

Across module SP

- SP chain made of n modules defined by design of local support structures (ATLAS pixels: up to n = 8 – 10)
- Modules/sensors grounds differ inside the SP chain
- Option investigated so far by ATLAS pixels

Figure from J. Christiansen

Enabling technologies

- Shunt-LDO regulator
 - 2 integrated in the FE-I4 chip
- Redundancy and module bypass
 - Parallel connection of all regulators on module
 - PSPP chip as part of DCS system
- AC-coupling
 - FE-I4 cmd and data DC-balanced
 - Self-biased FE-I4 RX inputs
- HV distribution concepts with return referenced to local module ground via high resistive path, or to current return

Current distribution on module

PSPP chip
Picture from N. Lehmann

FE-I4 AC-coupled LVDS link

Shunt-LDO regulator

- Idea and design by M. Karagounis (Hochschule Hamm-Lippstadt)
- Voltage regulation loop (LDO) → constant V_{out} = 2V_{ref}
- Current regulation loop (shunt) → keeps current through the regulator constant
- Ohmic input characteristics $R_{in} \approx \frac{V_{in}}{I_{in}} \approx \frac{R3}{k}$

- Shunt-LDO features
 - Robust design against process variation and mismatch for safe parallel operation
 - Parallel operation of regulators with different output voltages and shunting capabilities possible
 - Ability to shunt extra current
 - Different working modes for current and voltage based powering

Upcoming: shunt-LDO prototype in 65nm

- 1:1 copy of the design of the Shunt-LDO in FE-I4 (not yet designed for 65nm chip specs)
- Submitted last week

Testchip – Size

2 mm x 2 mm

Testchip - Content

3 regulator incl. biasing

Pad - Count

4 x 16 with 100 μm pitch

Area per Regulator:

800 μm x 400 μm

Pads per Regulator:

5 x input current

5 x shunt current

5 x output voltage

1 x reference voltage

1 x biaising voltage

1 x internal resistor con.

1 x external resistor con.

1 x shunt-circuitry supply

Pixel Serial Powering Protection (PSPP) chip

- Work done at Uni Wuppertal, design by L. Puellen
- Module bypass scheme integrated into DCS system
- PSPP chip loaded on module flex, connected in parallel to the module
- Features:
 - Autonomous fault detection
 - Addressable power control to switch on/off selected modules
 - ADC could be used to measure HV, sensor leakage current, temperature
- PSPP chip services: I2C and power → 3 lines per SP chain
- Two prototypes already existing → working principle demonstrated

Serial powering systems with FE-I4

- Several serial powering systems are in operation/development to study system aspects
 - Uni Bonn: 6 FE-I4 quad modules on a stavelet, partially equipped with PSPP chips
 - LBNL: 3 FE-I4 quad modules on a stavelet
 - Uni Liverpool: 4 FE-I4 quad modules on PCBs in one SP chain
 - Uni Glasgow and INFN Florence: SP chain of FE-I4 single chip modules on PCBs
 - More systems in preparation at CERN and Uni Oklahoma
- Overall performance is good, no significant differences observed with respect to voltage based powering schemes

Serial powering stavelet in Bonn

DCS power

USBPix power

I source

LBNL adapter PCB

USBPix3.0

Quad module

End-Of-Stave

All measurements and plots in the following slides done by V. Filimonov

Minimum threshold operation

- Starting point: 6 quad modules tuned to standard threshold values (i.e. 1500e⁻ threshold, 10TOT @16ke⁻)
- Lower the global threshold (GDAC) in steps
- At each step
 - Perform noise occupancy scan (10⁷ triggers, 25ns each)
 - Mask pixels with a noise hit probability (NOcc) $> 10^{-7}$
- When the number of masked pixels reaches 1% stop the scan
 - Leave the FE noisy and continue with the other FEs
 - Increase the global threshold (GDAC +1) and continue with the other FEs

Results of minimum threshold searches

- FEs can be operated at thresholds as low as ~800e-
- Noisy FEs in the chain do not affect the performance of the other FEs

Minimum Threshold

Improved minimum threshold search

- Starting point: 6 quad modules tuned to standard threshold values (i.e. 1500e⁻ threshold, 10TOT @16ke⁻)
- Lower the global threshold (GDAC) in steps
- At each step, tune the local threshold (TDAC), i.e. increase the threshold of noisy pixels
 - Perform noise occupancy scan (10⁷ triggers sent, 25ns each)
 - Mask pixels with NOcc $> 10^{-7}$ or TDAC at maximum
- When the number of masked pixels reaches 1% stop the scan
- Increase the global threshold (GDAC +1) and continue with the other FEs

Results of improved minimum threshold searches

FEs can be operated at thresholds below ~800e⁻, down to ~600e⁻

Minimum Threshold

Results of improved minimum threshold searches

2-trigger scan: influence on NOcc

- Starting point: 6 quad modules tuned to minimum threshold
- Command pattern
 - Trigger multiplicity = 1
 - Long fix delay between repetitions

2-trigger scan: influence on NOcc

- No increase in the number of noisy pixels wrt. standard operation
- Lowest delay between triggers ~45BC. For lower values data errors → needs to be investigated (observed also on direct power module)

Conclusion

- Powering for pixel detectors at the HL-LHC is challenging!
- Current ideas are based on long experience with serial powering of ATLAS pixel modules
 - Enabling technologies like shunt-LDO, module bypass scheme, ACcoupling data transmission etc. already developed and integrated in ATLAS pixel modules
 - Successfully built serial powered pixel systems based on FE-I3 and FE-I4 with similar performance as parallel powered systems
- More work needed in many areas (esp. off-stave)
 - Complete definition of the entire pixel powering scheme
 - Modularity, i.e. size of SP chains
 - Power, voltage and current requirements of chips resp. modules
 - Grounding and shielding concepts