Radiation hardness issues in 130nm and 65nm CMOS

F.Faccio
CERN - EP/ESE
Total Ionising Dose
This is the ‘classical’ problem for CMOS technologies and has to be addressed

Displacement Damage
It is very difficult to design a Reference voltage generator (bandgap) very stable with displacement damage and TID

Single Event Effects
‘Usual’ strategies are needed, but multiple bit errors are more likely - separation between redundant storing cells is required
The basis of TID effects in CMOS structures

Before irradiation

N-channel

P-channel

Trapped charge
ALWAYS POSITIVE!

Interface states
Can trap both e^- and h^+

Oxide charges

Interface states

Can trap both e^- and h^+

N-channel

P-channel

Before irradiation

Before irradiation
Charge buildup in the oxides and at their interface influences the electrical parameters of transistors (for the gate oxide) and of parasitic structures unavoidable in CMOS.
Radia%on hard processes

Hardness By Design (HBD) in commercial-grade processes

ca. 1998-2000
Production for LHC: 0.25um CMOS
TID up to 10Mrad

ca. 2006
Upgrades: 130nm CMOS
TID: 100Mrad

ca. 2011
(some) tracker upgrades: 65nm CMOS
TID: 400Mrad

Main transistor
V_{th}, g_m, ...
Leakage in parasitics

Leakage in parasitics
The accumulation of TID-induced ‘defects’ in an oxide decreases with the thickness of the oxide.

If the gate oxide is sufficiently thin, problems arise in the parasitic structures where the oxide thickness does not follow any scaling rule.

Source-Drain leakage is eliminated by the Enclosed Layout Transistor (ELT)...

Inter-diffusion leakage is eliminated by p+ guard rings...
The equation used for the design of ASICs used in today’s LHC experiments and manufactured in an (affordable) commercial-grade 0.25um process is:

Thin gate oxide + HBD techniques = Radiation tolerance
Radiation hard processes

Hardness By Design (HBD) in commercial-grade processes

Production for LHC:
0.25um CMOS

(production for LHC: 0.25um CMOS)

TID up to 10Mrad

TID: 100Mrad to 1Grad

Upgrades: 130nm CMOS

Valid HERE

 STILL VALID?

Main transistor

V_{th}, g_m, ...

Leakage in parasitics

Leakage in parasitics
Is this extrapolation correct?
MY HOBBY: EXTRAPOLATING

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.
In 2003-2005 we started to look at the 130nm node in view of application in LHC upgrades
Samples from 3 different vendors were irradiated and measured

Need for a commercial framework

Is gate oxide tolerance confirmed?

Is there still the need for ELTs and guard rings?
The main parameters extracted from the measurements are:
- Drive current (I_{on})
- Threshold voltage (V_{th})
- Transconductance (G_m)
- Leakage current

Leakage at $|V_{gs}| = 0V$, $|V_{ds}| = 1.2V$

V_{on} at $|V_{gs}| = |V_{ds}| = 1.2V$
The gate oxide in the three 130nm technologies studied appeared to be hard to the explored levels (30-140Mrad). This was directly measured on ELT transistors in 2 of the 3 technologies.

Example for ELTs in tech.A
The leakage paths are technology dependent
(here this is shown for source-drain leakage currents in NMOS)
The leakage current in NMOS is due to the accumulation of defects in the lateral Shallow Trench Isolation (STI) oxide.
In PMOS both type of defects increase the threshold of the parasitic lateral transistor, and no leakage current can be observed.
The selection of the manufacturer (Tech. A) was based on a number of criteria: long-term availability, cost, radiation tolerance, support offering, ...

A large effort was dedicated to the characterisation of the selected technology

Is there still the need for ELTs and guard rings?
The leakage current is the sum of different mechanisms involving:
• the creation/trapping of charge (by radiation)
• its passivation/de-trapping (by thermal excitation)
These phenomena are Dose Rate and Temperature dependent!

Is there still the need for ELTs and guard rings?
The properties of the defects (hole traps, interface states) have been studied in these two publications:

On the basis of our understanding of the mechanisms leading to the leakage current, the following scenario is plausible for discontinuous irradiation tests.
No digital library with ELTs and guardrings was developed. The standard cells library from a commercial supplier was considered usable

Designers have to evaluate if the leakage could threaten the circuit/system functionality in the application
The charge trapped in the lateral STI can also influence the characteristics of the main transistor - more evidently if it is narrow. This has been called **Radiation Induced Narrow Channel Effect (RINCE)**

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A

NMOS

PMOS

Example: apparent Vth shift in NMOS and PMOS transistors of different W, Tech. A
RINCE can be conceptually represented by this cartoon

NOTE: In this cartoon, there is no distinction between the positive charge trapped in the oxide or in interface traps
A report containing all irradiation results and guidelines for designers has been written in 2006 and distributed since

The report and links to the papers are available at the ASIC Support service Web site:

http://support-ictech-mpws.web.cern.ch/support-ICtech-MPWs/

The documents can be found under the page:

https://support-ictech-mpws.web.cern.ch/support-ICtech-MPWs/IBM-CMOS8RF/RadTol.htm

Excerpt from the report

In reading and applying the recommendations, one should remember that, while small analog circuits have been integrated by the HEP community in this technology and have given radiation results in line with the expectations, no real demonstrator of a medium-large digital circuit has been implemented and tested for radiation so far. It is also important to point out that, although the radiation response of the technology has been measured as unchanged over time (see section 2), exploiting its natural radiation tolerance presents some risks and requires constant monitoring over the full prototype and production cycle.

Also, measurements at low T could not be made at the time...
The leakage increase is visible in complex logic ASICs developed in this technology.

Logic core current consumption in the GBTx at room T: green curve (courtesy P.Moreira and GBT Team)

Logic core current consumption of the ABC130 at different T and dose rates (courtesy F.Anghinolfi and ABC130 Team)
... and current consumption in the ATLAS IBL in the experiment during data acquisition

... due to radiation-induced leakage current in the FEI4 ASIC
References to publications for radiation studies in this 130nm technology

Leakage current properties

Noise properties

- M.Manghisoni et al., “Noise Characterization of 130 nm and 90 nm CMOS Technologies for Analog Front-end Electronics”, IEEE TNS Vol.55, n4, August 2006, p.2456
- V.Re et al., “Total Ionizing Dose Effects on the Noise Performances of a 0.13 µm CMOS Technology”, IEEE TNS Vol.55, n3, June 2006, p.1599
- V.Re et al., “Review of radiation effects leading to noise performance degradation in 100 - nm scale microelectronic technologies”, in 2008 IEEE NSS conference record, p.3086

Reliability

M.Silvestri et al., “Degradation induced by X-ray irradiation and Channel Hot Carrier stresses in 130-nm NMOSFETs with enclosed layout”, IEEE TNS 55, n6, Dec.2008, p.3216
M.Silvestri et al., “Single Event Gate Rupture in 130-nm CMOS Transistor Arrays Subjected to X-ray Irradiation”, Presented at RADECs 2009, accepted for publication in IEEE TNS
The TID characterisation of transistors from the selected ‘backup’ 130nm technology has been made in 2014-15. The backup has meanwhile become the mainstream for all new developments.

The study was targeted at a TID of up to 400Mrad.

All the following figures have been provided by S.Michelis (CERN/EP/ESE)
Radia%on	hard

processes

Hardness By Design (HBD)
in commercial-grade processes

Production for LHC:
0.25um CMOS

ca. 1998-2000

(some) tracker
upgrades: 65nm
CMOS

TID up to 10Mrad

ca. 2006

130nm CMOS

TID: 100Mrad

Upgrades: 130nm CMOS

c. 2011

TID: 400Mrad

Main transistor

Leakage in parasitics

V_{th}, g_m, ...

Leakage in parasitics

RINCE

Entering HERE
The electrical performance of the NMOS transistors in practically unaffected, while PMOS lose drive current (I_{on}) by an amount dependent on their size: the smaller the transistor, the larger the degradation. The degradation is reduced during irradiation at lower temperature.

The study was targeted at a TID of up to 400Mrad
As already observed for Tech.A, the evolution of the NMOS leakage current is a function of the temperature and dose rate: it is the same physics!

HDR = 9Mrad/hour
LDR = 90krad/hour
The source-drain leakage current in NMOS is very different in samples produced in 2 different Fabs

Regular 0.15/0.12 Vth transistors from Fab14 and Fab6
I/O transistors rated at 2.5V show a much more relevant radiation-induced degradation

NMOS 0.15/0.28

PMOS 0.15/0.28
The radiation tolerance of the ‘backup’ 130nm technology (now streamline) is at least as good as for Tech. A - for “core” transistors.

Samples from Fab6 do not show any significant leakage current.

The difference in the leakage current between the two Fabs highlights the sensitivity of the radiation tolerance to processing.

Only one Fab has to be qualified and used for all runs (prototyping, production).

The natural radiation tolerance of the process should be regularly monitored.

Qualification of every lot has to be performed.

A report summarising all the available radiation results and containing guidelines will be soon published.
Scaling...

Year of first Radiation Tests in a technology for HEP on top of ITRS roadmap

65nm needs mainly for pixel FE ASICs and very high speed data communication (GBT-like)
The TID characterisation of transistors from the selected 65nm technology started around 2011

The study was targeted initially at a TID of up to 200Mrad, but was extended to 1Grad by the pixel community (RD53)
There will be no further comment about leakage currents, because we did not measure significant currents (for typical applications) in either NMOS transistors or FOXFETs.

The degradation of long and large transistors is limited: the thin gate oxide is radiation hard!

Irradiation conditions:
T = 25°C
Bias: |Vgs| = |Vds| = 1.2V
Curves Id-Vg in saturation
Radiation damage is severe in short and narrow channel transistors, where it depends on the bias and temperature applied both during and after irradiation.

Radiation-Induced Narrow Channel Effect (RINCE)
Radiation-Induced Short Channel Effect (RISCE)

T = 25°C
Bias: |Vgs| = |Vds| = 1.2V
RINCE: Narrow channel PMOS transistors do not work above 500Mrad, while NMOS are working without large damage up to 1Grad.

Transistors’ size: W=120nm, L=1um
Irradiation conditions:
T = 25C
Bias: |Vgs|=|Vds|=1.2V
RINCE in PMOS depends on bias and temperature

Transistors’ size: W=120nm, L=1um

Irradiation conditions:

* Bias:
 “Vgs” => |Vgs| = 1.2V, Vds=0V
 “Diode” => |Vgs| = |Vds| =1.2V
 “Gnd” => |Vgs| = Vds=0V

Annealing at high T is good!

Bias during irradiation is bad!

Sub-zero T during irradiation is good
RISCE: Short channel PMOS are more damaged than NMOS

Damage occurs also in ELT transistors, hence it can not be due to the STI oxide

Transistors’ size: $W=1\text{um}, L=60\text{nm}$

Irradiation conditions:

$T = 25\text{C}$

Bias: $|\text{Vgs}|=|\text{Vds}|=1.2\text{V}$
RISCE can be conceptually represented by this cartoon

Which defect? Which charge trapped? Where?

L=moderate size

Regions strongly influenced by the trapped charge

L=min size
RISCE in NMOS

Bias during irradiation is bad!

Transistors’ size: W=0.6μm, L=60nm
Irradiation conditions:
 * Bias:
 “Vgs” => |Vgs|= 1.2V, Vds=0V
 “Diode” => |Vgs|=|Vds|=1.2V
 “Gnd” =>|Vgs|=Vds=0V

Sub-zero T during irradiation is good

Annealing at high T is neutral or good
(for the most damaged devices)!
RISCE in PMOS

Transistors’ size: W=0.6um, L=60nm
Irradiation conditions:
* Bias:
 “Vgs” => |Vgs| = 1.2V, Vds=0V
 “Diode” => |Vgs|=|Vds|=1.2V
 “Gnd” =>|Vgs|=Vds=0V

Bias during irradiation is mildly influential

Thermal energy during irradiation is bad!

Annealing at high T is very bad if performed under bias!!
The qualification procedures for CMOS foresee a 1-week annealing period post-irradiation at 100°C. This considerably worsens the performance of PMOS transistors.

Transistors’ size: W=0.6um, L=60nm
Irradiation conditions:
* Bias:
 “Diode” => |Vgs| = |Vds| = 1.2V
The post-irradiation evolution in PMOS (V_{th} shift) is clearly a thermally activated process requiring the presence of bias!

Transistors’ size: $W=0.6\mu$m, $L=60\text{nm}$
Irradiation conditions:

* Bias:

 “Diode” $=>$ $|V_{gs}|=|V_{ds}|=1.2\text{V}$
Analog design

RISCE and RINCE can be hindered in analog design, where the designer can choose to avoid excessively narrow and short transistors. This has been confirmed in analog designs developed for radiation tolerance and irradiated to large doses.

Digital design

In digital design, the use of commercially available standard cells with minimum L transistors (and narrow ones as well) can lead to ASICs failure in some conditions at high doses. To ensure reliable functionality, we need to:
- use appropriate design safety margins
- use an appropriate qualification procedure

Are results of individual transistors under DC bias representative of the degradation of a digital circuit?
The large bias dependence of some of the observed degradations questions the applicability of the transistor-level results to estimate the response of digital circuits. In particular this is true for the short-channel PMOS and their post-irradiation evolution.

A specific study has been carried on an existing digital prototype (CMS tracker readout). The circuit was running at 40MHz during irradiation and annealing. The results hereafter are extracted from this work - courtesy of D.Ceresa and the MPA team.

IDEA: Find a data path failing at a certain voltage and frequency and observe how these vary with TID
The results from the shmoo plots are represented graphically as in this chart, as a function of TID.
The test evidences 2 different effects

Continuous degradation, function of Vdd in the target digital logic

Degradation at high dose, independent on Vdd in the target logic, and annealing strongly and rapidly at high T

mixed-signal block with a delay cell using narrow transistors (with rather long L)

Signature of RINCE in PMOS

Target digital logic

Combinatorial Logic

Period (nominal 25 ns)
The continuous degradation has instead the signature of RISCE (in PMOS in particular)

Larger degradation for irradiation at higher T

Additional degradation during post-irradiation annealing at high T

- 55% with annealing

Annealing (24 h 100 C)
Conclusions from the test of a digital prototype - in agreement also with measurements on 2 different SRAM designs

A qualification procedure could involve irradiation at room T followed by annealing at 100°C, the circuit having to pass both tests

The response of a digital circuit to TID can be correlated with the degradation induced by radiation on individual transistors, both for the narrow and the short channels

Digital designers MUST take appropriate margins that take into account the proven speed degradation of logic cells.

What is appropriate? In the case below, a speed degradation of 3.1x is observed after 150Mrad + high-T annealing…
Within RD53 (with the GBT and MPA teams) a work is ongoing to ‘modify’ the digital library and achieve larger tolerance to TID

Different modified cells are designed and tested, and a choice will be made by comparing their TID performance. Results are expected in summer.
We do not know if the observed phenomenology is common to all 65nm processes or if it is specific to the one we are using.

The same irradiation test, at -15°C and followed by high-T annealing, was performed up to 1Grad on transistors from 2 different manufacturers by CPPM Marseille (figures courtesy of M. Menouni and co-workers, CPPM). Irradiation results are overall similar, but the post-irradiation evolution of PMOS is not.
The performance of small-size PMOS transistors in 65nm and 130nm gets comparable after irradiation to 100-200Mrad and high-T annealing. The performance is here indicated by the ratio I_{on}/C_{gate}.
In some of the results above we can see analogies with the phenomenology observed in bipolar technologies subject to ELDRS (Enhanced Low Dose Rate Sensitivity)
A first experiment comparing damage at 2 different dose rates seems to point to an increased damage at lower dose rate

Given the variability between transistors, this first result needed confirmation by more accurate experiments

\[T = 25^\circ C \]
\[\text{HDR} = 9 \text{Mrad/hour} \]
\[\text{LDR} = 325 \text{krad/hour} \]

ratio of the dose rate \[\text{HDR/LDR} = 27.7 \]

all samples irradiated at HDR up to 50Mrad, then either at HDR or LDR

measurements averaged over 3 samples (HDR) and 2 samples (LDR)
Results from an on-going irradiation with a 60Co source at even lower dose rate: the damage is larger!

Source at CERN Prevescin (CC60 facility from EN), many thanks to S.Danzeca, A.Thornton, M.Brucoli, M.Brugger, for their support in setting up the experiment - in particular for the dosimetry

On-going study within CERN EP-ESE-ME: G.Borghello, S.Michelis, D.Porret, S.Kulis, J.Alozy, ...

$T = 25^\circ C$

$HDR = 9$ Mrad/hour

$LDR = 35$ krad/hour

ratio of the dose rate $HDR/LDR=257$

Average of 3 transistors per Chip
My Hobby: Extrapolating

As you can see, by late next month you'll have over four dozen husbands. Better get a bulk rate on wedding cake.
(some) tracker upgrades: 65nm CMOS

Upgrades: 130nm CMOS

time

ca. 2006 ca. 2011

TID: 100Mrad to 1Grad

TID: 100Mrad to 1Grad

TID: 400Mrad

Leakage in parasitics
RINCE

Leakage in parasitics
RINCE

RISCE

Process dependent!
Fab dependent!
130nm

2 Technologies available for ASIC design
• The present streamline is recommended for all new designs, it appears good for the targeted TID levels

65nm

Short and narrow channel radiation-induced effects are strong (RINCE, RISCE). These are complex and make the choice of a qualification procedure and of appropriate design margins difficult, in particular for digital design

all processes

Radiation tolerance varies in different Fabs, and can change over time. We have to:
• only qualify and use one Fab
• monitor regularly the natural radiation tolerance
• carefully qualify each ASIC during the prototyping and production phases
Radiation hard processes

Hardness By Design (HBD) in commercial-grade processes

Production for LHC: 0.25um CMOS

TID up to 10Mrad

ca. 1998-2000

Leakage in parasitics

ca. 2006

Main transistor
\(V_{th}, g_m, \ldots \)

ca. 2011

Leakage in parasitics

TID: 100Mrad

RINCE

RISCE

(some) tracker upgrades: 65nm CMOS

Upgrades: 130nm CMOS

0.25um CMOS

TID: 100Mrad to 1Grad

0.25um CMOS

(some) tracker upgrades: 65nm CMOS

TID: 400Mrad

Upgrades: 130nm CMOS

Ome

Time

TID

Difficulty
New technologies: large opportunities...
...but sometimes also new troubles...
...that can be solved by smart engineering!