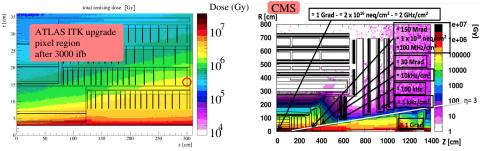


# Electrical Data Transmission

#### Martin Kocian

8 March 2015


Martin Kocian (SLAC)

**Electrical Data Transmission** 

8 March 2015 1 / 23

# Why copper links?

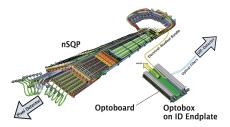
- SLAC
- High levels of radiation close to the beam line. Optical components (laser, fibers) would not survive long in this environment.
- Size. Optical modules can be too bulky in the very limited space inside the detector.
- Accessibility. Placing optical components deep inside the detector means they cannot be replaced during a normal shutdown if they break.
- ⇒ Electrical data transmission between the detector frontends and the optical components over several meters.



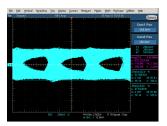
# Applications

#### Phase 0 Upgrade:

- ATLAS Pixel nSQP twisted pair.
- ATLAS Pixel IBL twisted pair.

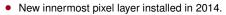

#### Phase 1 Upgrade:

• CMS Pixel twisted pair.


#### Phase 2 Upgrade:

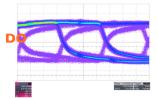
- ATLAS pixel twisted pair.
- ATLAS pixel twinax.
- CMS pixel flex.
- ATLAS pixel flex.
- CMS calorimeter PC board.

# ATLAS Pixel nSQP (new service quarter panels)

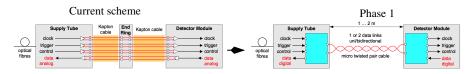



- Originally the optoboards were inside the inner detector.
- Fear of dying VCSELs.
- In 2014 the optical links were moved to the outside of the ID endplate to allow for access during a shutdown.
- Connection between the frontends and the optical components is done over 6.6 m of twisted pair cable.
- 28 AWG CCAI TWP with Kapton insulation for data readout at 80 Mbps.
- 36 AWG Cu TWP with Kapton insulation for clock and command (40 Mbps).




## ATLAS Pixel IBL (Insertable B-Layer)

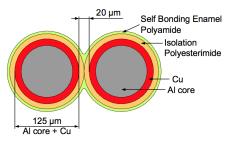





- Transmission over 5.4 m.
- 28 AWG Cu TWP w/ Kapton insulation for data at 160 Mbps.
- Originally we wanted to use CCAI like for nSQP but the wire was too springy which did not allow for the proper number of twists. As a consequence impedance control was not optimal and there was large cross-talk.
- 36 AWG Cu TWP with Kapton insulation for clock and command (40 Mbps).
- Great transmission but more material.

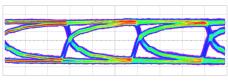





## CMS Pixel Phase 1

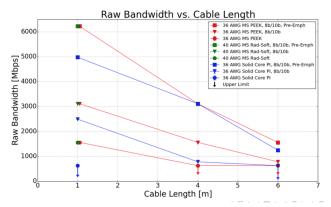


- Current scheme uses multi-level readout over flat ribbon cables.
- Patch-panel between frontends and optical readout.
- For phase 1 digital readout at 160 or 320 Mbps is envisaged.
- Distance between 1 and 2 m without patch panel.
- Unidirectional or bidirectional link.
- Low current drivers.
- Twisted pair wire.


SLA

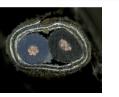
## CMS Pixel Phase 1




Eye diagram at 160 Mbps over 2 m:

- 125 μm twisted pair cable (ca. AWG36).
- Polyesterimide insulation.
- Self-bonding enamel polyamide cover.
- R&D done on copper clad Aluminum.
  - + Similar transmission properties as Cu wire because of the skin effect.
  - + Lower mass.
  - Very brittle.
- $\implies$  Now favoring Cu wire.





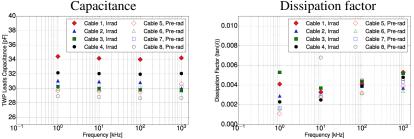

## ATLAS Pixel Phase 2 - on-detector



- For phase 2 rates of up to 5 Gbps are expected for the pixel detector.
- The distance between the FEs and the favored location for the optobox is 6 7 m.
- Can twisted pair cables be used for data transmission at these rates?
- Tests show that this is only feasible over short distances of about 1 2 m so twisted pair cable can only be used for on-detector transmission at these rates.

## ATLAS Phase 2 - Twisted Pair

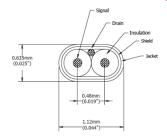





- A radiation hard twisted pair cable was developed and tested.
- 36 AWG stranded copper wires.
- PEEK insulation.
- Kapton jacket as mechanical and cross-talk protection.
- Bit Error Rates Tests (BERT) were performed on a 1.15 m long cable.
- Maximum rates for different transmission options are given in the table below.

| 8b/10b | Pre-emphasis | BW [Gbps] |  |
|--------|--------------|-----------|--|
| No     | No           | 1.555     |  |
| Yes    | No           | 3.110     |  |
| No     | Yes          | 4,976     |  |
| Yes    | Yes          | 6.220     |  |

#### ATLAS Pixel Phase 2 - Twisted Pair Irradiation


- An irradiation test at a fluence of 1.86 · 10<sup>16</sup> n<sub>ea</sub>/cm<sup>2</sup> was done on the cable at Sandia National Lab
- Impedance, capacitance, and dissipation factor of the cable were measured and compared to the values before irradiation.
- Some change in capacitance and dissipation factor was observed.
- The maximum rate as measured in a BERT, however, did not change.
- A direct measurement of the dielectric constant of PEEK after irradiation is in planning.

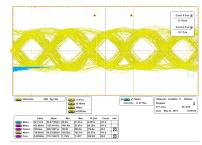


#### Dissipation factor

#### ATLAS Pixel Phase 2 - Twinax



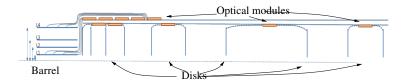



- A Twinax is a dual coaxial cable with a common shield ("Extension" of TWP).
- More material (compare to ca. 0.25 kg/km for a Cu/Kapton AWG36 TWP) but superior transmission properties.
- 3 custom prototypes were produced for R&D purposes.
- Currently Cu wire (later CCAI), low density polyethylene dielectric, Al foil shield, PU or polyester jacket.

| AWG | Width/mm | Height/mm | Mass (kg/km) |
|-----|----------|-----------|--------------|
| 28  | 2.39     | 1.32      | 5.2          |
| 30  | 1.75     | 0.97      | 2.55         |
| 34  | 1.12     | 0.64      | 1.1          |

#### ATLAS Pixel Phase 2 - Twinax

- Used a bit error rate tester with a number of fixed rates to determine the maximum rates at which the transmission is error-free.
- The table shows the max rates in Mbps.
- The eye pattern is for 6 m of AWG 28 at 5 Gbps.
- An earlier, similar prototype was irradiated at a fluence of 10<sup>16</sup> protons/cm<sup>2</sup>.
- No change in transmision quality was observed.

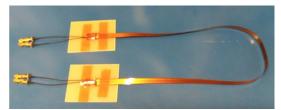

| AWG | length(m) | Raw  | DC bal./preem. |
|-----|-----------|------|----------------|
| 28  | 6         | 3110 | 8000           |
| 30  | 6         | 1555 | 6220           |
| 34  | 4         | 1555 | 6220           |

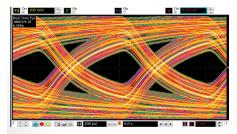


- Since TWP cannot be used to transmit at 5 Gbps over 6 m and twinax has too much mass to be used directly on the detector a *hybrid solution* is being investigated.
- 1 m of twisted pair soldered directly to 6 m of twinax.
- BERT test done on the hybrid: Result for AWG 28 twinax + TWP:

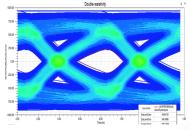
| 8b/10b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pre-Emph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Raw Rate (Gbps) | Errors             | BER                    | Run Time |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|----------|
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.622           | $4.57 \times 10^4$ | $1.93 	imes 10^{-8}$   | 1 hour   |
| <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.488           | 0                  | $1.46 \times 10^{-13}$ | 1 hour   |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Image: A set of the set of the</li></ul> | 3.110           | 0                  | $4.50 	imes 10^{-15}$  | 20 hours |
| <ul> <li>Image: A set of the set of the</li></ul> | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.220           | 0                  | $5.67 	imes 10^{-14}$  | 1 hour   |

#### CMS Pixel Phase 2 - Flex





- Place optoboards at a distance of 1 2 meters away from the frontend modules.
- Use a flex cable with differential transmission lines to make the connection.
- Kapton flex with Aluminum traces for low mass.
- Transmission rate 1.25 Gbps for compatibility with LPGBT (multiple lines per FE for innermost layer.)




## CMS Pixel Phase 2 - Flex Prototype

- A prototype was of 75 cm length was produced and tested.
- Tricky to atttach to Al traces.
- Good agreement with simulation after adjusting DC resistance.
- Eye patterns at 1.25 Gbps:





#### MEASUREMENTS



#### SIMULATIONS

## CMS Pixel Phase 2 - Alternatives

#### Flex:

- A number of variations of the flex cable is being investigated.
- Cu traces instead of Al traces.
- Different ground plane options.
- With and without soldermask.
- Total mass varies between 0.62 kg and 2.56 kg.

#### **Twisted Pair:**

- In addition twisted pair cable is being considered.
- 36 AWG.
- Cu or CCAI.
- With and without shield.
- Total mass varies between 0.46 kg and 3.7 kg.

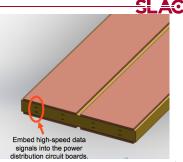
## ATLAS Pixel Phase 2 - Flex

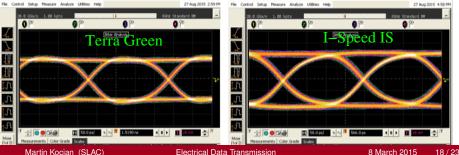
- Flex for on-detector data transmission.
- Length 1 m.
- Kapton flex with copper traces.
- Rate requirement 5 Gbps.

- Irradiation at 2 · 10<sup>16</sup> neq showed no degradation.
- A hybrid cable with flex and twinax is in preparation.
- Bit error rate results can be found in the table below.

| 1.0m Flex Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |        |                       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|-----------------------|----------|
| 8b/10b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pre-Emph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Raw Rate (Gbps) | Errors | BER                   | Run Time |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.488           | 0      | $1.20 	imes 10^{-13}$ | 1 hour   |
| <ul> <li>Image: A set of the set of the</li></ul>  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.110           | 0      | $9.52 	imes 10^{-14}$ | 1 hour   |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.110           | 0      | $1.14 	imes 10^{-13}$ | 1 hour   |
| <ul> <li>Image: A second s</li></ul> | <ul> <li>Image: A second s</li></ul> | 6.220           | 0      | $2.63 	imes 10^{-15}$ | 21 hours |




Martin Kocian (SLAC)


**Electrical Data Transmission** 

8 March 2015 17 / 23

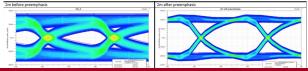
# CMS HGCAL - PC board

- High speed data lines in power distribution PC board.
- Two 1.05 m long prototypes were produced:
  - Isola Terra Green material.
  - Isola I-speed IS.
- Tested at 4.8 Gbps.
- Pre-emphasis and equalization tested.
- Eye patterns with pre-emphasis:





#### Pre-emphasis (and de-emphasis)




- Pre-emphasis and de-emphasis are techniques to distort the transmitted signal in order to counteract frequency-dependent losses in the transmission line.
- This is an important tool for Gb rate transmission.
- Left: without pre-emphasis
   Right: With pre-emphasis.

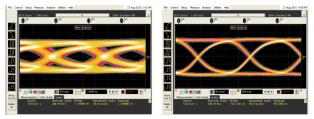
#### Example from the CMS HGCAL:



#### Example from the CMS pixel upgrade:



Martin Kocian (SLAC)


Electrical Data Transmission

## Equalization


Equalization achieves a similar effect at the receiving end by applying a high pass filter to the incoming signal.

• Example from the CMS HGCAL comparing both techniques:

Pre-emphasis: (left: raw right: pre-emphasis)



**Equalization:** (left: raw right: equalization)



Martin Kocian (SLAC)

Electrical Data Transmission

SLAC

## Data Encoding

- DC balancing of the signal results in major improvement of the transmission quality.
- This is achieved by encoding the data.
- Typical codes are:
  - 8b/10b.
  - 64b/66b.
  - Scrambling.
  - Biphasemark-encoding.
  - Manchester-encoding.
- Depending on the encoding scheme part of the bandwidth is lost.
- $\implies$  Optimization needed.
  - An additional benefit of DC balancing is the possibility of AC coupling the signal.
  - Serial powering of the detector requires AC coupling.
  - Commercial optical receivers are AC coupled so DC balancing is required for their use.

## Connections

- --SLAC
- The most straightforward way to attach a cable to a PC board is by soldering.
- For the detector installation this solution is not necessarily very practical.
- Connectors are needed. Small and suitable for Gb rate transmission.

#### Example for coaxial cables:

- U-FL: Standard connector for single micro coax.
- Fuzz buttons: Multi-channel high frequency.
   Example for flex cables:







are Hat-Fuzz Button\*Comprozend With Device

- Zero Insertion Force (ZIF).
- Clamps down on cable.
- Rad hard?
- Sufficiently reliable?
- $\Rightarrow$  Connectors are a crucial element for electrical data transmission.

Martin Kocian (SLAC)

Electrical Data Transmission



#### Summary

- R&D on electrical data transmission is ongoing for
  - Twisted pair cables.
  - Flex cables.
  - PC boards.
  - Twinax cables.
- The distance ranges from 1 m to 7 m.
- The rates vary between 160 Mbps to 5 Gbps.
- Copper or Aluminum conductors.
- Techniques like DC balancing, pre-emphasis, and equalization are important.
- Solutions for connecting the cables have to be found.

 $\implies$  Finding the right cable is an optimization between reliable transmission on the one hand and minimizing the amount of material and space on the other hand.

Acknowledgment: Many thanks to L. Caminada, J. Christiansen, V. Fadeyev, B. Meier, N. McFadden, R. Rusack for material and input.

Martin Kocian (SLAC)

Electrical Data Transmission