Overview of future DAQ for Alice, LHCb and **Atlas**, **CMS**

ACES 2016, CERN Frans Meijers – CERN EP-CMD

- DAQ parameters
- Read -Out
- Event Building
- HLT facility
- Storage
- Concluding Remarks

Acknowledgements

- Alice:
 - P.VanDeVyvre
- Atlas:
 - D.Francis, W.Vandelli
- CMS:
 - E.Meschi, A.Bocci, S.Cittolin, A.Racz, S.Erhan, V.Innocenti, M.Hanssen,
 J.Hegeman, R.Mommsen, P.Zejdl, A.Holzner
- LHCb
 - N.Neufeld
- IT department
 - O.Barring, M.Girone

Schedule TDR

- Alice
 - 2015-Q2 TDR online-offline computing system O2
- LHCb
 - 2014-Q2 TDR trigger and online upgrade
- Atlas
 - 2013 LOI
 - 2015-Q3 Phase-II Upgrade scope
 - 2016-Q2 IDR (Initial Design Report)
 - 2017 TDR for TDAQ
- CMS
 - 2014 Phase-II TP
 - 2015-Q3 Phase-II Upgrade scope
 - 2019 TDR for Trigger
 - 2020 TDR for DAQ

DAQ PARAMETERS

DAQ Parameters

	Run	# HW/SW trigger levels	Level-x accept rate	Event size	EVB Effective thru	storage
Alice (Pb-Pb)	3	1 /0	50 kHz	60 MB	0.5 TB/s	80 GB/s
LHCb	3	0 / 1	40 (30) MHz HLT 20 kHz	0.1 MB	4 TB/s	2 GB/s
Atlas	4	1 or 2 / 1	L0/L1 400 kHz or L0 1 MHz HLT 10 kHz	~ 5 MB	5 TB/s	50 GB/s
CMS	4	1 /1	L1 750 kHz HLT 7.5 kHz	~ 5 MB	4 TB/s	40 GB/s

• Note:

- Alice: HLT does extensive data reduction (factor 6) before EVB
- Atlas: HW trigger L0/L1 or L0 under discussion

Frans Meijers - 10.03.2016

CMS L1 / DAQ / HLT

- Same two-level architecture as current system
 - L1 hardware trigger: 40 MHz clock driven, custom electronics
 - High Level Trigger (HLT): event driven, COTS computing nodes

	LHC	LHC	HL-LHC	
	Run-I	Phase-I upgr.	Phase-II upgr.	
Energy	7-8 TeV		13 TeV	
Peak Pile Up (Av./crossing)	35	50	140	200
Level-1 accept rate (maximum)	100 kHz	100 kHz	500 kHz	750 kHz
Event size (design value)	1 MB	1.5 MB	4.5 MB	5.0 MB
HLT accept rate	1 kHz	1 kHz	5 kHz	7.5 kHz
HLT computing power	0.21 MHS06	0.42 MHS06	5.0 MHS06	11 MHS06
Storage throughput (design value)	2 GB/s	3 GB/s	27 GB/s	42 GB/s

Table 7.1: DAQ/HLT system parameters.

CMS Phase-II detector R/O parameters

Sub-det	# links on- 2 off- detector	Type (Gbps)	use	Data reduction	Event size (Mbyte)	#DAQ links (100 GBps)
TK-outer	13 k 2 k	GBT (4 G) GBT (9 G)	DAQ + Trig 20% + 80%	On-det	05. – 0.6	100
TK-pixel	1 k	lpGBT (9 G)	DAQ	On-det	0.7 – 1.0	200
ECAL- barrel	12 k	GBT (3 G)	streaming	Off-det	1.2	200
HCAL	2 k	GBT (3 G)	streaming	Off-det	0.2	40
HGCAL	9 k	lpGBT(9 G)	Streaming?	On-det?	1.2	200
Muons DT	6 k	GBT (3 G)	streaming	Off-det	0.1	20
Muons CSC	1 k	GBT (3 G)	DAQ+Trig 50%+50%	Off-det	0.1	20
Trigger						20
EVB					4.2-4.6	800

Atlas Phase-II

System	Buffering	L0	L1
		Readout	Readout
ITk	On-detector	Rol/Full	Full
LAr	Off-detector	Rol	Full
Tile	Off-detector	Rol	Full
MDT	Off-detector	None	Full
Legacy	On-detector	None	Full
MDT			
NSW	On-detector	None	Full
RPC	Off-detector	None	Full
Thin Gap Chamber (TGC)	Off-detector	None	Full

- Under discussion: L0/L1 1 MHz / 400 kHz or L0 1 MHz
- Event size ~5 MB

DAQ to 1st order

• All similar

READ-OUT

Trigger DAQ

High level design – readout unit

- Synchronous domain (40 MHz clock driven)
 - Towards front-end electronics via serial point-to-point links 5-10 Gbps (mostly GBT)
 - Receive DAQ data
 - TTC and throttle
 - Optional Send / receive "DCS"
 - Optional Transmit to Trigger electronics (same or separate links as DAQ)
 - forward trigger selected data in case of "streaming" DAQ
- Asynchronous domain (event driven)
 - Data aggregation (concentrator)
 - Buffer
 - Sub-detector specific processing (data reduction, processing, especially suited for channel-by-channel processing)
 - Protocol conversion, transmit / receive standard commercial network

LHCb Trigger DAQ

LHCb

LHCb

LHCb

Figure 3.7: The PCIe based readout system. The PCIe40 readout boards are directly connected to the event-builder PCs through 16-lane PCIe edge-connector.

- Read-out Unit = PC + PCI40 card
- PCIe-g3 100 GbE, so ~25 GBT links providing 4 Gbps

Alice Common Readout Unit

Upgrade architecture overview

• Use PCI40 from LHCb

Atlas Trigger DAQ

Atlas DAQ "Readout"

Atlas FELIX implementation for Phase-I

• Atlas FELIX looks similar to PCI40 architecture of Alice / LHCb

Atlas FELIX for phase-II

- Same architecture but evolving implementation
 - Common hardware platform
 - Possibly sub-detector specific FW plug-in
- kind of Mezzanine card in a server
 - PCIe gen4, other system IO-bus, ..
- Additional requirement
 - In L0/L1 case, need to bifurcate Trigger data for tracker
 - about 10% of data due to ROI

- Bifurcate stream coming from FE to Trigger
- Common Control+Timing HUB and DAQ concentrator (AMC13)
- In L1 upgrade re-use of various AMC cards (plug-in FW)

Frans Meijers - 10.03.2016

CMS Phase-II read-out example (TK)

Front Rear 100G Tx12 Tx12 Tx12 stubs RTM 120G 100G Rx12 Rx12 Rx12 120G 100G To/From FE To L1TF 100G **100G BACKPLANE** DCS Tx12 Tx12 Tx12 120G DAQ Rx12 Rx12 Rx12 120G 29 Feb 2016 Francois.vasey@cern.ch 7

• Note: BW for Trigger/DAQ is ~80/20 %

DTC: an artist view

CMS ideas for DAQ - RU

- Synchronous part done in xTCA
- Asynchronous part of DAQ, some options
 - Point-to-point link to intermediate cDAQ "Hub" card
 - Mezzanine on leaf card
 - From leaf card via xTCA backplane to other slot
 - when concentration useful
 - Link and Protocol
 - Custom or Ethernet L2 or TCP when sufficient memory resources
 - Back pressure
 - cDAQ RU (preferably on surface)
 - PC with a commercial NIC (Ethernet L2), or custom card
 - Concentrator, buffer
 - Protocol converter to EVB network (Ethernet or HPC)

EVB

EVB design / implementation choices

- ROI based or full event building
 - Large implications for EVB HLT interface and HLT framework
- Lossy (incomplete events) or Lossless EVB
 - All experiments are or move to Lossless
- Network technology
- Protocols
- Event Manager to control EVB process and optionally throttle trigger
- Effective throughput vs bi-section bandwidth
 - "folded" EVB to use bi-directional links
 - Traffic shaping ?
 - Studied by Alice

EVB network technology

- Ethernet
 - Switches with or without "deep buffers"
 - L2 or TCP/IP ?
- HPC: Infiniband, Omnipath, ..
 - Trend for closer integration with CPU (Omnipath)
- 100 Gbps now (4x25 Gbps lanes)
 - Likely 200 Gbps (4x50 Gbps lanes) at LS3
- Interfacing to FPGA based Read-Out Unit
 - Ethernet:
 - Layer2 ok, but transmission unreliable
 - (reduced) TCP/IP possible in FPGA, but needs memory for buffering
 - HPC: difficult

EVB scaling and switch technology

- CMS today Infiniband FDR (56 Gbps) EVB (switches w/o buffers)
- Scaling NxN: Efficiency is about 50% of line BW

Optimization: use of bi-directional links (LHCb)

 Same event-builder node is used for read-out unit and builder unit

LHCb EVB

- 4 TB/s throughput
- Full event building, event assignment distributed by TTC system
- Bi-directional event building
- Assume 500 servers, 100 Gbps links, ~50% efficiency

CMS EVB baseline

- 4 TB/s throughput
- Full event building
- Assume 400 servers, 200 Gbps links, ~30% efficiency

Atlas EVB/HLT

- ROI based event building, on demand by HLT processes
- Object store with large capacity connected to switch

HLT facility

Dual-Xeon server evolution

Extrapolation of HLT farm needs (Atlas/CMS)

- Atlas (Phase-II scoping doc Sep 2015)
 - Estimate
 - Use L1 TT at 1 MHz, FTK++ at 100 kHz, CPU farm input 400 kHz
 - Result
 - Need ~11 MHS06, split ~50/50 in to FTK++ / CPU
- CMS (TP and scoping doc)
 - Guestimate based on
 - Current detector, PU dependence, possible gain with using L1 Track trigger
 - Result:
 - PU = 140 / 200 and HLT input 500 / 750 kHz: need ~ 5.0 / 11.0 MHS06
- To fix ideas:
 - Need 11 MHS06 in 2026 (Atlas/CMS has ~ 0.7/0.5 MHS now)
 - Ignore that likely LHC-HL will not start with PU=200
 - Compare LHCb: need 3.3 MHS06 in 2021

Extrapolation for HLT farm (dual Xeon based)

- To fix ideas: Need ~11 MHS for HLT in 2027 (Atlas/CMS)
- Observed (~ 2007 2015) dual-Xeon servers
 - Roughly constant Power, constant cost per server (with CERN IT "sweet-spot")
 - Start point Q1-2016: server with 0.66 kHS and 0.35 kW and X kCHF

Assumed perf. increase per year of servers	25% / year [WLCG 2014]	12.5 % / year
11 years	12	3.7
#servers in Q1-27	1431	4562
Total power Q1-27	0.5 MW	1.6 MW

- Comments
 - Ignore installed base from run-3
 - Current Atlas and CMDS datacenter ~1 MW cooling looks insufficient
 - Likewise Alice, LHCb specify 2 MW cooling (containerized data center)

Processors for HLT farm

- Dual-Xeon
- Non x86 under consideration
 - ARM etc
- Commercial specialized (co-)processors under consideration
 - Multi-core (Xeon-Phi etc)
 - Co-processing with commercial GPU, FPGA boards
 - Alice has experience with GPU, but Alice's use case different from pp
- Custom co-processors
 - Co-processing with custom HW (FTK++ in Atlas with Ass. Memory)

Specialized (co-) processors

- CMS experience, so far
 - CMS "standard" code, alternative platforms not competitive (price/perf) compared to Xeon (See http://arxiv.org/pdf/1510.03676v1.pdf)
- Very active area of research
 - Eg "Connecting the DOTS 2016" for tracking
- Concern
 - (fine grain) parallelization and vectorization
 - Requires extensive re-engineering of the code
 - Portability and long-term maintainability
- HLT farm versus worldwide Tier-n centers
 - HLT farm is under control of experiment, so easier to deploy alternative platforms

An industry trend: CPU+FPGA acceleration

IVB+FPGA Software Development Platform

Software Development for Accelerating Workloads using Xeon and coherently attached FPGA in-socket

Programming Interfaces : OpenCL

Atlas HLT CPU / custom FTK++

• HLT process (ROI based) can request processing of event by FTK++ processors via proxy connected to HPC network

STORAGE

Storage

- Alice
 - 80 GB/s, capacity 70 PB
 - Considering Cluster File System (GPS,Lustre), "Object Store", EOS, ..
- LHCb
 - 2 GB/s
- Atlas
 - 50 GB/s
 - Use the "Object Store" of the EVB-HLT
- CMS
 - 40 GB/s
 - Could use Cluster File System as now, or something else

CONCLUSION

Areas of R&D for DAQ

- Servers for IO EVB nodes
 - PCle bus
 - Zero copy, Memory effective throughput
- EVB and HLT architecture
 - Full event building versus ROI
- Network fabrics for Event Collection, building, distribution
 - Ethernet or HPC
 - Traffic shaping ?
- Use of high level languages for FPGA programming
- Large in memory Object store, Storage systems
- Use of SW technologies
 - Eg data analytics tools
- Data center

Final Remark

- People effort for
 - Development of SW for control, configuration, monitoring
 - Integration and maintenance
- Very significant compared to the effort for
 - DAQ data flow SW in strict sense
- Hence
 - There is a gain from uniformity by using common HW and SW components
- Trend using common (commercial?) HW, FW and SW building blocks with "plug-ins" for sub-detector specific functionality

EXTRA MATERIAL

CMS standard offline code on specialized processors

- Not competitive compared to dual-xeon (2015)
 - See http://arxiv.org/pdf/1510.03676v1.pdf

Frans Meijers - 10.03.2016

Links and Serialisers High Speed I/O Standards

- FPGA xilinx-7 (2013) 10 Gbps
- PCIe gen4 16 Gpbs (2017-18)
- IB EDR 25 Gbps (2015)
- Future HPC Fabric lanes
 - 25 Gbps (2015-2016), 32 Gbps (2017-18), 50-56 Gbps (19-20)

Ethernet

