

#### **Versatile Link PLUS**

Csaba SOOS EP-ESE-BE

on behalf of the VL+ collaboration



#### **Outline**



- Versatile Link PLUS project introduction
  - Key differences between VL and VL\*
- Link architecture
  - New front-end variants supporting e.g. multi-channel readout
- Link components
  - Back-end
  - Passives
  - Front-end module
    - Requirements, challenges
    - Optical components
    - ASICs
    - Packaging options
  - System
- Summary

#### Introduction to Versatile Link PLUS



- The Versatile Link PLUS project (VL+) targets the phase II upgrades of the ATLAS and CMS experiments
- VL+ was officially announced at ACES 2014 and started on 1 Apr 2014. It is subdivided in three phases of 18 months each:
  - Phase 1: proof of concept (Apr 2014 Oct 2015)
  - Phase 2: feasibility demonstration (Oct 2015 Apr 2017)
  - Phase 3: pre-production readiness (Apr 2017 Oct 2018)
- Collaboration between CERN, FNAL, Oxford, and SMU

|                 | Versatile Link         | Versatile Link PLUS                        |
|-----------------|------------------------|--------------------------------------------|
| Optical mode    | Single- and multi-mode | Multi-mode                                 |
| Flavours        | 1Tx+1Rx, 2Tx           | Configurable at build time up to nTx(+1Rx) |
| Radiation level | Calorimeter grade      | Tracker grade                              |
| Form factor     | SFP+                   | Custom miniature                           |
| Data rate       | Tx/Rx: 5 Gb/s          | Tx: 5/10 Gb/s, Rx: 2.5 Gb/s                |

Table: Key differences between VL and VL+

#### **Versatile Link PLUS architecture**



#### **Versatile Link PLUS**



On-Detector
Custom Electronics & Packaging
Radiation Hard

Off-Detector
Commercial Off-The-Shelf (COTS)
Custom Protocol

#### **VL**<sup>+</sup> front-end module variants



## Discrete-based derived from:

- Light peak
- USB-3
- Thunderbolt



1 TX + 1 RX



3 TX (single channel LDDs) + 1 RX



1/3/4 TX (using LDD array) + 1 RX



4 TX (single channel LDDs)



4/8 TX (using LDD arrays)

# Array-based derived from:

QSFP+ engine

#### **Link components**





**Back-end: FNAL** 

**Passives: CERN** 

**System: FNAL** 

**Module & Components: CERN** 

ASICs: SMU (EE & PHYS) Reliability: Oxford

## I. Back-end (FNAL)





- Identify commercial back-end components compatible with the VL+ system
  - Continuous survey, selection and evaluation process
  - Recommend compatible parts to users
- Specifications for back-end Tx, Rx and TRx
- Shortlist components in two categories
  - Mid-board and board-edge
- Define test procedures and test benches
- Modules already tested
  - Samtec FireFly
  - Avago Mini/MicroPod
  - FCI Leap







## II. Passives (CERN)







- Define cabling plant to meet specific HL-LHC requirements
  - High radiation dose over a short distance in a cold environment
- Investigate cabling options outside the sub-detectors
  - Trunk cabling: higher density and moderate ruggedness
  - Investigate connector solutions used in the industry (MTP, MXC, ...)
- Calculate the impact of the radiation inside the detector
  - RIA, bandwidth, ...
- Irradiation tests for front-end cabling plant
  - 1 MGy, room temperature and cold (-55C)

## III. VL+ front-end module (CERN)





Versatile

- Up to 4Tx + up to 1 Rx, configurable at build time or by masking channels
- 4Tx + 4Tx may become feasible (TBD)
- MM only
  - 850 nm VCSEL
  - InGaAs PIN (TBC)
- Miniaturized
  - Target dimensions 20 x 10 x 2 mm
- Pluggable
  - Either optical or electrical (or both) connector
- Data-rate:
  - Tx: up to 10 Gb/s
  - Rx: up to 5 Gb/s
- Environment
  - Temperature: -35 to + 60 °C
  - Radiation (based on Tracker requirements, TBD)
    - Total Dose: 1 MGy qualification (investigations up to 2 MGy)
    - Total Fluence: 2x10<sup>15</sup> n/cm<sup>2</sup> and 1x10<sup>15</sup> hadrons/cm<sup>2</sup>



## IV. Opto-die (CERN) and reliability (Oxford)

© SMU.

♣ Fermilab

Versatile Link

\*\*

- Identify and test VCSEL and Photodiode chips (CERN)
  - Single PIN, single VCSEL, and VCSEL array
- Temperature tests (CERN)
  - VCSEL may have to be modified/optimized for cold
- Irradiation tests (CERN)
  - TID and total fluence
  - VCSELs, InGaAs and GaAs PIN diodes have been tested in Dec. 2015
- Reliability tests (Oxford and Academia Sinica)
  - 85C/85% RH
  - TOSA ageing tests
  - Opto-die testing







#### V. ASICs (SMU)



- Single-channel laser driver (see Paulo's talk)
  - Tested electrically at 10Gb/s



- 4-channel laser driver
  - 3 designs have been submitted
  - Expected in April-May
- Current GBTIA design meets the specs
  - Redesign is not planned for the time being



#### VI. Packaging (CERN) – Option 1



- In-house design and development of full custom module
- First iteration was successful with commercial ASIC
- New version with new ASICs and a low profile coupling block has been launched





## VI. Packaging (CERN) – Option 2



- Work with vendors on the customization of their existing commercial modules in a framework compatible with CERN purchasing rules
- Keep competition until late stage, but also allow some selection as development progresses
- First contact has been established, and market survey procedure is being launched



Original

Commercial, qualified by CERN

Custom, designed by CERN

**Proposed customizations steps** 

#### VII. System (FNAL)



- Update system specifications
- Develop system test framework
- Verify VL+ links using system test stand demonstrator



#### **Summary**



- Versatile Link PLUS project successfully completed first project phase
  - We demonstrated concept of miniature, integrated, multi-channel fibre optic link for experiment readout and control
- Back-end
  - Candidate components are being tested
- Passives
  - Optical cable and connector candidates have been identified
  - Fibres have been irradiated in cold
- Front-end module
  - Sample VTRx+ made available to first user
  - Damp-heat testing of modules will start soon
  - Several ASICs are in the pipeline
  - Further developments are ongoing with commercial partners to benefit early from industrialization
  - Level of customization will be strongly influenced by final quantities
- Feasibility demo will take place by Q2/2017
- Target production starting in 2019