Network and database connection

e Establish network connection between the CORAL client and CORAL server
e Establish database connection between the CORAL client and the CORAL server
Solution

Acceptor-Connector pattern for both problems

Info

http://www.cs.wustl.edu/~schmidt/PDF/Acc-Con.pdf

UML

Acceptor-Connector.jpg

Explanation
e The server must handle multiple TCP connections: TCP event demultiplexing is necessary.
e The server must listen to multiple passive ports: data channel, control channel
o Only data channel is implemented for the moment
e The server must establish database connection
o One per TCP connection for the moment
e The server must handle multiple client connections over an established TCP/database

connection: client demultiplexing. The TCP operations and the relational operations follow the
same pattern (establish connection, then handle multiplexed events), therefore the Acceptor-
Connector pattern is an ideal candidate for both. The UML diagram summarizes the two
realizations of the pattern, and their interaction.

Event Demultiplexing

e Need to demultiplex different TCP events (connection request, connection dropped, data

arrived)

e Need to demultiplex messages coming from th shared TCP channel

Solution: Reactor pattern for both problems
Info: http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf
UML.: Acceptor-Connector.jpg

Explanation

See the event demultiplexing aspect in Problem 1.

Pattern usage

e The classes implementing the Reactor are:
o CoralServer::Dispatcher

Event handlers are registered in runtime

The server may be parametrized to use or not the control channel, need to define
ports in runtime, etc.

The event loop is in the _start_a active method

Handle TCP connection requests

Dispatch to CoralDataAcceptor or CoralControlAcceptor
CoralControlAcceptor is not implemented yet!

o CoralServer::CoralDataAcceptor

Read and reconstruct messages in the event loop

The class is an Acceptor in TCP context, but Dispatcher in CORAL messaging
context

Acceptor role in handleEvents method (confusing, rename to accept!)

Dispatcher role in _startMessageHandling_a active method (confusing, rename to
dispatch!): the event loop is here.

Event handlers are registered in compile time

All the events (messages) are known in compile time

o Common properties:

Event loop implemented in active methods (both are Active Objects)

Concurrency
The server must serve multiple concurrent requests.

Solution: Through Reactive Synchronous Event Dispatching (See Problem 2). The event handlers are
Active Objects-s. The concurrency model behind the active objects is using of multiple synchronous
threads. The threading resources follow the Thread Pool pattern. The Active Object-s encapsulate the
concrete tasks by using the Command pattern.

Info: http://www.cs.wustl.edu/~schmidt/PDF/Act-Obj.pdf : Active Object pattern
http://en.wikipedia.org/wiki/Command_pattern : Command pattern
http://en.wikipedia.org/wiki/Thread_pool : Thread Pool pattern

UML: Thread Pool Structure.jpg: class diagram for the Thread Pool and Active Object aspects. The
reference documents summarizes the dynamics: the Coral Server objects can be mapped to them easily.

Implementation
The static and dynamic structure follow the above documents. Some remarks:

e The threading resources are encapsulated in the Worker objects

e All the Workers execute an event loop (see the doc) and race for Tasks. They wait when the
SynchronizedQueue is empty. When Tasks are queued, all the Workers are waken up, and one of
them picks up a Task.

e The Tasks are created by the active methods: an active method creates a Task object, and
encapsulates an implementation (servant) method of the active object into it. The Task is
scheduled by using the ThreadPool::enqueue() method, then the active method returns
immediately. The Task will in fact include a pointer to the object, a pointer to the method to be
called, and a copy of (or reference to) the method parameters.

e The implementation (Servant) method is executed later, when a Worker pops the corresponding
Task.

e The above mechanism follows the Command pattern, see the dynamics in the references..

e When the SynchronizedQueue is full, the ThreadPool::enqueue (so the active method) blocks.

e All the classes providing active methods inherit from ActiveObject class. This class provides
some basic services to the active objects like:

o Template to create Command-s that

o Encapsulating Command-s to Tasks, and enqueue them

o Lifetime management: the object is not deleted until all the running active method returned

o Exception management: an exception does not propagate out of the active object. In case of
exception, the active method is terminated, and the Worker picks up another task.

o The threading model is a template Policy. It means that an active object can be turned into
an ordinary object (synchronous execution) by simply changing the policy. For the Policy
based design see Andrei Alexandrescu: Modern C++ Design.

Communication between the client and the server

Extends the TCP socket concept: CoralSocket. The CoralSocket encapsulates a request/reply message
exchange context containing IP address, TCP port, client ID, request ID.

UML: CoralSocket.jpg

Info: Dependency Injection pattern (see for instance Dr. Dobb's Journal, #384, page 10)

TCP socket CORAL socket
Example struct sockaddr in addr; Connect msg;
int sock = socket(PF INET, TcpSocket tcpSock(created somehow);
SOCK STREAM, 0): - CoralSocket sock(tcpSock, clientID,
- ! ! requestID, opcode, cacheable);
send(fd, buffer, length, 0); nsg. write(sock)
What Raw data (buffer, length) Structured, limited set of message objects
Destination | A network host A CORAL client
How SOCK_STREAM: select TCP/IP as TepSocket: select TCP/IP as transport layer
transport layer
Lifetime During the whole connection Limited to sending one message only. The
CoralSocket lifetime is independent from
the underlaying (connected) TcpSocket.

Design for testability: The CoralSocket is isolated from the transport by the ICorallOHandler
interface. So, the messaging system may be tested without the networking subsystem, using the
Dependency Injection pattern and mock message objects (DataStringStream implementation of

ICorallOHandler, instead of TcpSocket). Example: in the CoralMessaging unit tests, see

the

CoralExceptionTest.cpp, for example (_checkAnException method).

Message exchange example between the client and the server:

1.

2.

3.

client connects to the server

1. create a TcpSocket, by using TepSocketFactory: :CreateConnectingSocket

2. Transport layer connection established
client creates a concrete message object

1. the message knows about its opcode
2. client sets the caching policy

client creates a CoralSocket object

1. gives the TcpSocket as parameter

2. specifies its client ID

3. specifies a request ID

4. client writes the message into the CoralSocket
1. The message encodes itself into a raw string representation
2. The string is sent over the network

5. The server receives the raw string from the networking

6. The server reconstructs the message

7. The server creates a CorallnputSocket, that encapsulates the client TCP/IP properties, the client
ID, the request ID

8. The CorallnputSocket and the message object is passed to the message handler
9. The server executes the encoded relational operation
10. The server creates a reply message

11. The server creates a CoralSocket, by using the passed CorallnputSocket so that the reply
contains the proper client and request ID-s

12. The server writes the reply message into the CoralSocket

13. The client receives the reply message.

Server control channel, statistics

It is a named pipe. The user can write the following commands to the pipe:
e logon: switch logging on
e logoff: switch logging off
e stat: display the statistics

The debug channel handler is implemented in the DebugController class that is an active object (the
controller is executed inside a Worker, in a different thread). The pipe can be accessed by
/tmp/CoralServer.<pid>

The messaging statistics data is collected by CoralMessaging::Utils::StatisticsCollector, that is a
synchronized Singleton.

Synchronizing, locking
Info:

Monitor Object pattern: http://www.cs.wustl.edu/~schmidt/PDF/monitor.pdf

Strategized locking, scoped locking, thread-safe interface:
http://www.cs.wustl.edu/~schmidt/PDF/locking-patterns.pdf

To serialize access on concurrently used objects, we use the Monitor Object pattern. An object that
requires synchronized access must derive from CoralBricks::MonitorObject.

The critical sections of the methods must be protected by using the following macros:

void A Synchronized Object::method()
{
MONITOR START CRITICAL

// ordinary code
MONITOR END CRITIAL
}

The macros implement the synchronization by the Strategized Scoped Locking pattern. The
implementation is provided by the Boost::thread library.

All the classes requiring synchronized access are designed and implemented using the Thread-safe
Interface pattern: it avoids self-deadlocks and provides minimal locking overhead.

http://www.cs.wustl.edu/~schmidt/PDF/monitor.pdf
http://www.cs.wustl.edu/~schmidt/PDF/locking-patterns.pdf

CoralMessaging

Implements the message exchange system, according to the CORAL Server Protocol Description. The
main functionalities:

e The CoralSocket implementation
o To send a message
o Establish a message exchange context
e [CorallOHandler interface
o encapsulate an isolate the transport layer
o defines a Dependency Injection point, to be able to unit-test the messaging and the relational
layer without networking and the server
e Implementations for the /Corall OHandler
o TcpSocket subsystem
m factory to create different TCP sockets (active, connecting, listening)
m TCP event demultiplexer
m TcpSocket: the POSIX socket is encapsulated in here
o DataStringStream subsystem
m Mainly for tests
m network-less message exchange between software components
e The message set
All the messages encapsulate a relational operation, follow a well-defined protocol
Messages implements the IMessage interface
Messages encodes themselves into raw binary data
Messages decodes themselves from raw binary data
Implement the Coral Application Layer protocol
e Some common utilities
o Error handling
o Logging
o Statistics collection
® MessageReceiver
o Messages are events — the subsystem provides the event demultiplexing
Sends/receives messages, according to the Coral Transport Layer protocol
Segments/reconstructs messages
Handles transport problems, it is hidden from the user
The message receiver returns full, reconstructed, valid messages only, so only those
messages represent events
o Invalid messages discarded transparently.

O O O O O

O O O O

MessageReceiver

The main CORAL message / event demultiplexer. Implemented in CoralMessaging.
The CoralServer and CoralAccess modules use it differently:

CoralServer
e In the event loop of CoralDataAcceptor
o The only point in the server code that uses the MessageReceiver
e Wait for and receive messages continuously
e Any received message represents an event
e The associated relational operation is executed in an active or passive method of the
MessageHandler.

CoralAccess
e Sends a request message
e No event loop, wait only for one particular reply message
e All the classes exchanging messages instantiate their private MessageReceiver

All the messaging protocol is behind the single MessageReceiver::receive method.
e Wait until a valid, full message arrives, or timeout occurs
e If message arrives, query for the
o received message (encapsulated in IMessage)
m server: start the associated event handler
m client: check if the waited reply message arrived
o origin (encapsulated in CorallnputSocket)
m server: sends a reply message to the client encoded in the socket
m client: checks if the message target is really itself (client ID, request ID must match)

The basic mechanism in the MessageReceiver::receive method:
1. Receive a packet, by using the CTL::PacketReader.
1. Return valid packet only
2. Exception if
1. the line is dropped
2. garbage arrived
3. version mismatch in the packet header
2. If valid packet arrived, add it to a MessageBuffer
1. The MessageBuffer collects the message segments (the packet payload-s)
2. All incoming messages have a MessageBuffer instance
1. The line is multiplexed, more packets from more clients may arrive, mixed up
2. The client ID — request ID pair determines the MessageBuffer instance
Checks the message segmentation and opcode match, packet-by-packet
4. In case of error
1. send the proper error message to the client
2. delete the MessageBuffer, associated to the message
1. It means discarding the whole message
3. Check if with the actually received packet, one of the partial messages got full. If so, then:

oY)

1. The message is in its raw binary format
2. Reconstruct the message object by using the MessageFormatter
1. Fetch the opcode
2. Instantiate a message object and call its decode method on the raw data stored in the
MessageBuffer
3. If the reconstruction fails, it means that the message is malformed
1. Send back a Syntax Error message
2. Discard the message
4. Ok, we have a full, successfully encoded message object: we got an event. Return true.
5. If timeout occurred during the process, return false.
1. The timeout does not invalidate the message buffers storing partial messages. The next
receive call continues from the actual state.

Implementation comments:
1. Static structure: MessageReceiver.jpg
2. The PacketReader state machine: PacketReader_State_Machine.jpg
3. The MessageBuffer state machine: MessageBuffer_State_Machine.jpg
4. The state machines are implemented by using the Boost::StateChart library
1. http://www.boost.org/doc/libs/1 37 0/libs/statechart/doc/index.html
2. The benefits:
1. The UML state machine diagram can be mapped directly to the code
2. Uses state-local variables and explicit state transitions
3. Enables extremely modular and robust state machine implementations
4. Yeah, heavily templated...

http://www.boost.org/doc/libs/1_37_0/libs/statechart/doc/index.html

Event/Message handling in the server

The event dispatching method of CoralDataAcceptor runs a MessageReceiver in an event loop. If a
message arrived, it is passed to the MessageHandler::handle method of a MessageHandler instance.

The MessageHandler represents the relational state of the CoralServer. There is one MessageHandler
per physical line. Its state machine is in MessageHandler_StateMachine.jpg.

The MessageHandler may have in two states: Connected or Unconnected. It must be understood in
database connection context. A Connect message may establish a database connection and a session. If
it is successful, the MessageHandler transits to the Connected state. The CloseSession may terminate
the database session (and the connection), and transits the state machine to Unconnected state.

In Unconnected state, all the messages are discarded, except for the Connect message. In Connected
state, all the relational messages are handled.

The Connect and CloseSession messages are executed synchronously, while all the other messages are
handled asynchronously.

The relational state is represented by an ISessionProxy object. It is stored in an instance of the
CoralMessageHandler class, that is created by the MessageHandler, when the state machine transits to
Connected. The (active) methods of this class are the message handlers themselves, executed in the
associated ISessionProxy context. All the CORAL relational objects and operations are centralized

(modularization issue...).

Static structure: MessageHandler.jpg

Message representation, encoding, decoding

Rationale
The rationale behind the message serialization design:
* We know the structure and type of messages in compile time (no type discovery, etc.), both
on client and server time.
e The messages must implement the CORAL server protocol
» The protocol is a binary one, taking the different system architectures into account.
* The implementation must support easy implementation and simultaneous usage of different
protocol versions.
* As the protocol is subject to rapid changes and prototyping, the implementation must be able
to follow those changes quickly.

Design

All the messages have two parts: the CTL header and the message body (payload). The CTL header is
implemented in the CoralProtocol module, and it is independent from the message body.

The message body implements both the CTL and CAL messages. It is constructed from some well-
defined basic types and message objects. The message objects may constitute basic types and other
message objects as well. So, all the messages can be represented by a tree, where the leaf nodes are
always the basic types. The basic types have well-defined serialization rules, and the serialization of the
message objects are based on the serialization of their basic types. The list of the simple types are in the
protocol description.

From the simple types and message objects, we can construct arrays. The array structure is:
* aword giving the number of array elements
* the array elements

For example, an array of bytes may encode strings, blobs, etc.

All the messages are implemented as individual classes, in the CoralMessaging module, collected
under the namespace Message::CAL. All the message classes share the following semantic:

* Inherited from the abstract IMessage class:

* The messages can be written into a CoralSocket

* There are getter methods for the individual message parts. All the getters give constant
reference to the message part.

* There are no setters for the message parts. The message structure (relations to the
constructing objects) is fully defined in construction time.

* The constructors accept the basic types by value, the message objects and arrays by
reference. The message content can be modified only by modifying the message objects.

* The system decides when the serialization/deserialization happens. The user has no control
over the process.

e The message is serialized when the user writes it into a CoralSocket. During the process, all
the message parts are serialized, according to their individual serialization rules.

* The message is deserialized when the message is fully arrived and reconstructed. It means

that all the message parts are deserialized in order, according to their individual
deserialization rules. If the deserialization fails, the message is dropped, and the sender is
notified (by sending a SyntaxError CTL message)

* It means, that the user code always receives syntactically correct messages, it must check
only the content (meaningful or not).

Apart from the basic types and arrays, all the message parts must inherit from the IMessageObject
abstract interface.

* Encode converts the message object into a byte string. This string is written directly into the
communication stream (serialization).

* Decode constructs the message object from a byte string (deserialization). The byte string is
read directly from the communication stream.

The basic types and arrays have built-in serialization and deserialization rules. All the message
serialization and deserialization ends up in serializing and deserializing basic types and arrays.

The above general rules enables that the implementation be governed by a simple embedded language,
and code generation behind. The coder must define the structure of the message objects and messages,
and the code generator creates the message serialization and desarialization code, and embeds them
into the system. The implementation of the code generator is based on the Boost metaprogramming
library (both template and preprocessor metaprogramming is involved). The embedded language is a
simple, declarative macro language.

Info:
http://www.boost.org/doc/libs/1 37 0/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1 37 0/libs/preprocessor/doc/index.html

Message object defining language

We describe it by giving an example where all the language elements are represented. The example
defines the structure of the client monitoring information for the proxy that is piggy-backed on the
Connect message. The monitoring information contains the PID and the command line parameters of
the client process.

The code is generated by the following:

#define MSGOBJ CLASSNAME MonitoringInformation

#define MSGOBJ_CLASSNAME_STR "MsgObj::MonitoringInformation"
#define MSGOBJ_PAR NUM 2

#define MSGOBJ PAR NAMEO pid

#define MSGOBJ PAR NAME1 cmdline

#include "ObjectGenerator.h"
MSGOBJ_MESSAGE_CLASSGENERATOR 2 (MonitoringInformation, uint32 t, std::string);

The code generator will create the CAL::MsgObj::Monitoringlnformation class, with implementation
of all its methods.

The code generator implements the “encode” and “decode” methods as well. The string is serialized as

http://www.boost.org/doc/libs/1_37_0/libs/preprocessor/doc/index.html
http://www.boost.org/doc/libs/1_37_0/libs/mpl/doc/index.html

an array of bytes; the uint32_t is serialized as a word. These serialization rules are built-in,
implemented as templates.

Let’s see the language elements:

MSGOBJ_CLASSNAME: Defines the class name of the message. The following type will appear in
the system:

Coral: :CoralMessaging: :CAL: :MsgObj: :MonitoringInformation

MSGOBJ_PAR_NUM: number of the message object parameters. This is 2 in our case (the pid and
the description).

MSGOBJ_PAR_NAMEX: defines the method names of the getter methods. The numbers after the
MSGOBJ_PAR_NAMEX defines the order of the message object parameters (the object elements are
serialized/deserialized in this order). It must start from O and incremented by 1 at each parameter name.

#include "ObjectGenerator.h"

Triggers the code generation. Using the values of the macros defined earlier, a class template will be
generated. The macros are undefined at the end, so we can use them multiple times in the same file.

MSGOBJ MESSAGE_CLASSGENERATOR 2 (MonitoringInformation, uint32 t, std::string);

Pulls the type into the code by instantiating the generated template with the message part types. The
number prefix (_2) must be equal to the number of message object parameters. Supported numbers are
0-8. The first macro argument must repeat the class name of the generated object, the rest define the C+
+ types of the message object parameters, in order. The parameter type must be one of the following:

* abasic type for which a serialization/deserialization template is generated
* aclass name for a message object. That class must inherit from IMessageObject.
* an array of the above types.

Message defining language

The message defining language is similar to the message object defining language, but it generates code
for the message classes.

As an example, here is the definition of the Connect message:

#define CAL CLASSNAME Connect

#define CAL CLASSNAME STR '"CAL: :Connect"

#define CAL PAR NUM 2

#define CAL PAR NAMEQO connection

#define CAL _PAR NAMEI1 monitoring

#define CAL CACHEABLE 1

#include "CoralMessaging/CAL/CALMessageGenerator.h"

CAL MESSAGE_CLASSGENERATOR 2 (Connect, MsgObj::Connection, MsgObj::MonitoringInformation)

Apart from the different prefix (CAL instead of MSGOBJ), the syntax and the semantics are the same
like in the message object case. One additional element is the CACHEABLE macro. If it is set, the
message will be cacheable meaning that the user can control the cache-ability of the message. If it is

not set, the user has no access to this feature.
As we can see, the CAL_MESSAGE_CLASSGENERATOR_2 contains message object classes as type
definitions for their parameters. They may be basic types and arrays as well.

Testing

A class have an associated unit test class in the TestSuite sub-module. The unit tests are implemented by
using the CppUnit package, and bundled into an unit test suite application. It means that one single
application may execute all the unit tests of a module.

The integration tests are in the Coral::Tests module.

The classes are designed for testability. The unit tests are whitebox tests, and the use extensively the
dependency injection pattern, mock objects, fixtures.

Pattern: an unit test associated to a class has <classname>Test. Look them in the appropriate TestSuite
or UnitTestSuite modules.

	Communication between the client and the server
	Rationale
	Design
	Message object defining language
	Message defining language

