D CERN[T
/1 Data Management Group Department

ob.|

CORAL Server Project

Design and Development Proposal
for Client, Server and Proxy

Andrea Valassi (CERN IT-DM)

CORAL Server Internal Review, 8th December 2008

CERN - IT Department
CH-1211 Geneve 23
Switzerland

www.cern.ch/it

. . . CERNIT
Proposed design guidelines

Department

Joint design of server/client/proxy components
— Software collaboration vs. TCP packet contract
— Development model: ‘*horizontal’ vs. ‘vertical’

Allow several people to work independently
— Minimize software dependencies and couplings

Promote standalone tests of components
— Try to intercept bugs before they show up in system tests

Modular design favoring iterative development
— Allow upgrade of one component without touching the others

Decouple components using abstract interfaces

— Minimize size of public headers: thin interfaces, simple constructors

— Encapsulation: hide implementation details within each component
&Y

08.12.2008 — CORAL Server Design Proposal A. Valassi - 2 ==

{ User application I

A

[

RelationalAccess interfaces |

[

)

1 13

invoke return
remote remote
call results

CoralAccess
(client plugin)

CORAL application

i

| RelationalAccess interfaces |

8 6
return invoke
[local][local]
results call

CORAL server
(executable)

2 12 9 5
marshal unmarshal marshal unmarshal
arguments results results arguments
3 11 10 4
send receive send receive
request reply reply request
Y <

08.12.2008 — CORAL Server Design Proposal

N

(plugins for Oracle, MySQL...)& 7

A. Valassi -3

{ User application I

A

[

RelationalAccess interfaces |

[

1

client bridge
o)\

invoke
remote

classes
return
remote

] [results

call

ClientStub

12

[

marshal

arguments results

)

unmarshal]

ClientSocketMgr

[

i

(plugins for Oracle, MySOL.

CORAL application

\

Y1) 7

| RelationalAccess interfaces |

ServerFacade

6

|

return
local
results

local
call

I

invoke

]

[

]

10

11
send receive
request reply

08.12.2008 — CORA

) 4

[

ServerStub 5
marshal unmarshal
results arguments
ServerSocketMgr
send receive
reply request

]

L Server Design Proposal

A. Valassi - 4

A

=

client bridge
13

classes

RelationalAccess interfaces k_

|

return
remote
results

invoke
remote
call

I

|

2/

ClientStub

12

CORAL application

{ User application
(plugins for Oracle, MySQL...YT) 7

| RelationalAccess interfaces |

co

|

ServerFacade g
return invoke
local local

results call

]

~

CoralServerBase

unmarshal
results

marshal
arguments

)

|

[

ServerStub 5
marshal unmarshal
results arguments

]

ClientSocketMgr
11

~

CoralServerBase

receive
reply

send
request

)

ServerSocketMgr
send receive
reply request

|

~

)

08.12.2008 — CORAL Server Design Proposal

A. Valassi -5

User application I :

A

client bridge
classes

I

ClientStuby’

sunmarshal
£ results

&
R
4

&
&
L4
L4
L4

return]

invoke
remote
call

remote .
results’

|

L4
L4

marshal
arguments

[]

| RelationalAccess interfaces |

CligntSocketMgr
se,r'l'd receive
reguest reply
y
\ 4

CORAL proxy
(executable)

4

AN

v
&

ServerSocketMgr”

receive send
request s reply

R
N

inche

&
N

reply to ret'iuest from cache;
cachg forwarded reply

N

/ N
for.y&?ard forward
\ reguest reply)
\ :.)

N——a

/ﬁ‘ CORAL application

(plugins for Oracle, MySOL...)

)

| RelationalAccess interfaces |

|]

ServerFacade

invoke
local
call

return
local
results

I

ServerStub

)

unmarshal
arguments

marshal
results

[

]

ClientSocketMgr ServerSocketMgr
send receive send receive
\ request reply reply request
—Y =
\ 4 CP_RNY
A. Valassi - 6 =

08.12.2008 — CORAL Server Design Proposal

ServerSocketMgr
receive send
request reply

a ([eestionder | N

ache

reply to request from cache;)
cache forwarded reply

) N
forward] [forward

request reply

\ Y /

N—

-~

ClientSocketMgr

send receive
request reply

\/
08.12.2008 — CORAL Server Design Proposal A. Valassi -7

User application }

J

A

RelationalAccess interfaces |

client bridge \
classes

|

invoke
remote
call

I

return
remote
results

]

ClientStub

[

marshal
arguments

)

unmarshal

results

)

ClientSocketMgr

[

send
request

)

receive
reply

J

v

08.12.2008 — CORAL Server Design Proposal

Monitor

4 o)
log and collect statistics:

#requests by opcode,
response time...
forward

(forward
request reply

—

S
NS

A. Valassi - 8

User application }

J

A
[RelationalAccess interfaces |
client bridge \
classes
invoke return
remote remote
call results

ClientStub

[

marshal
arguments

unmarshal
results

)

ClientSocketMgr

[

send
request

receive
reply

Monitor

/

log and collect statistics:
#requests by opcode,
response time...

~

(forward
request

/

forward
reply

Ne

/

J

v

08.12.2008 — CORAL Server Design Proposal

—

A. Valassi -9

ServerSocketMgr
receive send
request reply

Monitor /
! C !

- ~ ache

log and collect statistics:
#requests by opcode,
response time...

1 | | Ve ~N
(forward forward) forward forward
request reply request reply

reply to request from cache;)
cache forwarded reply

\
N

\

! l ClientSocketMgr
send receive
\ request reply

\/
08.12.2008 — CORAL Server Design Proposal A. Valassi - 10

S
NS

Monitor

4 o)
log and collect statistics:

#requests by opcode,
response time...

(forward forward)
request reply

—

S
NS

08.12.2008 — CORAL Server Design Proposal

/ﬁ‘ CORAL application J\

(plugins for Oracle, MySOL...)

| RelationalAccess interfaces |

ServerFacade

return invoke
local local
results call

ServerStub

marshal unmarshal
results arguments

ServerSocketMgr
send receive
reply request
v =
CERN
A. Valassi - 11

Package 1 — interfaces

 In my diagram: CoralServerBase

e Two main sets of abstract interfaces

— ICoralFacade (all relational operations that need network roundtrips)
» Auxiliary interfaces: query definition, ...

— IRequestHandler (get string reply to a string request)
» Auxiliary interfaces: handler factories, message (byte stream), ...

« Afew common classes may also be needed
— Dummy request handler for tests
— Adapter of a string request to extract relational header

08.12.2008 — CORAL Server Design Proposal A. Valassi - 12 ==

_ CERNIT
Package 1 — interfaces

Department

e |CoralFacade
— This defines what relational info needs to be shipped on the network
(and how/when to do that)
« Some CORAL API calls do not need network round trips
« Example: split query definition (local) from query execution (remote)
* Minimise network round trips by deferring and grouping them
— Link request type to reply type

* If you send a ‘fetchRows’ request message via sockets, the reply
message must contain a list of rows (or an exception)

* |IRequestHandler

— Do not assume that exchanged messages will be relational

» Reorder fields in agreed packet header: first those needed for low-level
socket management (endian, size...); then the relational ones (opcode,
cacheable...), treated as part of the request/reply string

— Need optimization to avoid data copy overhead

08.12.2008 — CORAL Server Design Proposal A. Valassi - 13 ! !—"\

_ CERNIT
Package 1 — interfaces

Department

class IRequestl Iandler

{
public:
[/ Destructor.
virlual ~TRequesiHandler() {}

/I Handle a request message and return a reply message.
/// The ownership of the reply message 15 delegated to the caller.
virtual std:;auto_ptr<const IMessage= replyToRequest(const IMessaga& request) =0,

1

class IMessage

{
public:
'/l Destructor.
virtual ~IMessage(){}
Or even better, replace
const std::string& /// The message payload for this request/reply.

by virtual const std::string& payload() const = 0;
const coral::Blob*

08.12.2008 — CORAL Server Design Proposal A. Valassi - 14 ! !—"E

_ CERNIT
Package 1 — interfaces

Department

[/ ObjectID type used for sessionID, cursorID, bulkOperationID (valid Token's are always > 0).
typedef int Token;

class ICoralFacade

{

public:
/// Destructor.
virtual ~ICoralFacade(){}
[---]

/I Create a new session and return its sessionlD_
virtual const Token connect(const std:-string& dbUrl,
const coral::AccessMode mode = coral::Update) const = (;

/I Release a session
virtual void releaseSession(const Token sessionID) const = (;

[-]

{/{ Create a new cursor for the given query and return 1ts cursor ID.
virtual const Token executeQuery(const Token sessionID,
const IPortableQueryDefinitioné& qd) const = 0;

/I Release a cursor
virtual void releaseCursor(const Token cursorID) const = 0;

/// Fetch a new bulk of rows from the given cursor.
virtual const std: :-vector<coral:: AttributeList> fetchRows(const Token sessionlD,
const Token cursorID,
const unsigned int maxSize) const = 0;

{// Feteh all rows from the cursor.
virtual const std: - vector<coral:: AttributeList™ fetchAllIRows(const Token sessionlD,

const [PortableQueryDefinitiond qd) const = 0; @

[-..]
08.12.2008 1 A. Valassi - 15 =

_ CERNIT
Package 1 — interfaces

Department

* Proposed team: ALL (need stable interfaces)
— |CoralFacade: mainly Andrea, Alex
— IRequestHandler: mainly Martin, Andy, Alex

e Standalone tests of the CoralServerBase package?
— Very few tests needed (mainly an interface definition package)

* Possiblilities for reuse of existing code
— Interfaces from the old prototype following this design
— Limited use of abstract interfaces in the present code

08.12.2008 — CORAL Server Design Proposal A. Valassi - 16 it

CERNIT
Package 2 — sockets (+threads)

Department

e In my diagram:

e Client-side: ClientSocketMgr
— Implements IRequestHandler, sends requests over TCP/IP

« Server-side: ServerSocketMgr
— Receives requests via TCP/IP, delegates to an IRequestHandler

A < TCP/IP A>

~

ClientSocketMgr ServerSocketMgr
send receive receive send
request reply request reply /

<v TCP/IP > — =5

08.12.2008 — CORAL Server Design Proposal A. Valassi - 17 ==

CERNIT
Package 2 — sockets (+threads) Department

* Proposed team: Martin, Andy
— Can we use the same components for server/client and proxy?!
— Any special requirements for chaining of proxies?

e Exchange packets without assuming relational content

— First header for this package only needs low level TCP/IP protocol
« endian, version, clientlD (for proxy), packet size, requestiD (, seq#?)
— A string payload with relational content should start with a second

nested header containing the relational metadata, but this package
does not need to be aware of this

» opcode, cacheable flag (, relational version?) (, sessionID?)
» followed by relational payload

— Suggest reordering of packet header to simplify IRequestHandler

08.12.2008 — CORAL Server Design Proposal A. Valassi - 18

CERNIT
Package 2 — sockets (+threads)

Department

CORAL Server packet header
In lttle-endian notion 121212007

CERN)
)

Bit 31 Bit 0
~CTL ~CAL
Magic word: packet delmiter T Honeg
cOrS: bigendia;'lfSrDc:Iittleend\an [SocketHeader [SocketPaonad]]]
=[SocketHeader [RelationalHeader [RelationalPayload]]]
versian Client Id
SocketHeader
Packetsize = (MagicWord | Version | ClientID? | Size | RequestID | Seq#?)
apeada Request |d .
: RelationalHeader
n Resew:ggf:rmmm : Suuence ik = (Version2? | Opcode for ICoralFacade method | Flags)
t r .
: RelationalPayload
- Payloac: 1 = (streaming of ICoralFacade method arguments)
equest string :
Context info
CORAL server protocol data

SaL

T —— 3 ~CAL

08.12.2008 — CORAL Server Design Proposal A. Valassi - 19 it

CERNIT
Package 2 — sockets (+threads)

Department

 User of socket tells the socket:
— Send this string payload

* This may encapsulate relational data (relational opcode, cacheable flag,

relational payload), but the socket does not need to know that...

 User of socket does not tell the socket:

— The transport-layer packet metadata assigned by the socket
» Endianness of socket (? use fixed endianness instead ?)
» Version of socket protocol header
« Total size
* RequestID
o ClientID (?)
e Sequence# (not needed?)

— User of the socket does not need to know the above transport-layer

metadata (e.g. for relational processing)

08.12.2008 — CORAL Server Design Proposal A. Valassi - 20

CERNIT
Package 2 — sockets (+threads)

Department

e Threads in the client
— Several client threads can use the same ClientSocketMgr

e Threads In the server

— One main listener thread in the ServerSocketMgr
— One socket thread per established client socket
— Several handler threads per socket thread

» Asynchronous handling of requests on each client socket
« Each handler has/is an IRequestHandler

» ServerSocketMgr instantiated from an IRequestHandlerFactory to create
handlers (in CORAL Server, all these handlers use same ICoralFacade)

« Eventually: add SSL authentication via certificates

— Authenticate with the CORAL Server before sending any message
— Unrelated to remote DB authentication or relational content

08.12.2008 — CORAL Server Design Proposal A. Valassi - 21 ==

CERNIT
Package 2 — sockets (+threads) Department

« Standalone tests of the CoralSockets package

— Use a ‘dummy’ test request handler that returns a reply string which
IS the same as the request string plus some additional characters

— Check that the client gets the same results through a local dummy
handler or a remote dummy handler connected via sockets

— Several single and multi client examples:
» Send all 256 possible characters
« Send very long strings to check segmentation

* Send numbered asynchronous requests from several client threads, test
that the server sends the right reply to the right client

* Possibilities for reuse of existing code
— Socket-related state machines
— Reactor/Acceptor pattern

08.12.2008 — CORAL Server Design Proposal A. Valassi - 22

_ _ CERNIT
Package 3 — encoding/decoding Department

e In my diagram:

e Client-side: ClientStub
— Implements ICoralFacade, delegates to an IRequestHandler

e Server-side: ServerStub
— Implements IRequestHandler, delegates to an ICoralFacade

ClientStub ServerStub

unmarshal} [marshal

arguments results arguments results

marshal J [unmarshal

08.12.2008 — CORAL Server Design Proposal A. Valassi - 23 ! !—"E

_ _ CERNIT
Package 3 — encoding/decoding

Department

* Proposed team: Alex

 Encode as string: relational header plus relational payload
— Apart from the header, encoding syntax fully encapsulated here
— System design should avoid need to publish all opcodes

* Exception handling is also part of this package

* Possibilities for reuse of existing code
— Template-based Boost generator and other encoding mechanisms
— Exception handling infrastructure

08.12.2008 — CORAL Server Design Proposal A. Valassi - 24 ==

_ _ CERNIT
Package 3 — encoding/decoding

Department

« Standalone tests of the CoralStubs package
— Process test string, decode, encode back, compare to original
— Process test arguments, encode, decode back, compare to original
— Cover also exception throw/catch
— Cover both requests and replies (unit tests of subcomponents)

08.12.2008 — CORAL Server Design Proposal A. Valassi - 25 it

_ CERNIT
Packages 4a/4b — relational access

Department

e In my diagram:

« Client-side: bridge classes Session, Query...
— Implement ISession, IQuery... , delegate to an ICoralFacade

e Server-side: ServerFacade
— Implements ICoralFacade, delegates to ISession, IQuery...

4 4
/ [RelationalAccess interfaced) \ / \
(ISession, IQuery...)) —
4 client bridge classes) _
(Session, Query...) invoke return
[invoke] [return] local local
remote remote \ call results /
k \ call results) /

[RelationalAccess interfaces J

— (Session, ouE..
v D)

08.12.2008 — CORAL Server Design Proposal A. Valassi - 26 it

_ CERNIT
Packages 4a/4b — relational access

Department

* Proposed team: Andrea, Alex

« ServerFacade is a CORAL application (ConnectionService)

— In the general stateful case, an object store registers and looks up
sessions, cursors and bulk operations by their token/ID

— In the stateless case, a single DB session can be opened and no
open cursors or bulk operations are allowed

 Remote DB authentication is done by ServerFacade
— Connection state to remote DB is controlled here

08.12.2008 — CORAL Server Design Proposal A. Valassi - 27 ==

_ CERNIT
Packages 4a/4b — relational access Department

o Standalone tests of the CoralAccess/CoralServer packages

— Special ‘local’ connection option of CoralAccess: bridge classes
delegate directly to a local ServerFacade without encoding/decoding
and/or without packet exchange over sockets

— Load ServerFacade as a plugin if possible to avoid direct linking
— Any read-only (and eventually read-write) CORAL test can be used

* Possiblilities for reuse of existing code
— Present client code derived from old prototype following this design
— Resurrect server code from old prototype

08.12.2008 — CORAL Server Design Proposal A. Valassi - 28

CERNIT
Package 5 — proxy cache

Department

e In my diagram:

* Proxy cache engine: class Cache
— Implements IRequestHandler, delegates to an IRequestHandler

— Filters requests/replies: either reply to requests from cache, or

forward them and cache replies for next execution of same request
A

a (1 emestronder | N

ache

4 N\
reply to request from cache;

cache forwarded reply

(forward forward)
request reply

N .

08.12.2008 — CORAL Server Design Proposal A. Valassi - 29 il

CERNIT
Package 5 — proxy cache

Department

* Proposed team: Andy

« Should look at cacheable flag only if possible

— Which opcodes need a special handling and why?
« Database connect/disconnect
« Transaction start/commit/rollback
— System design should avoid need to publish all opcodes if possible

e e.g. if startTransaction is a special case of ‘droppable’ packet, add a
droppable flag instead, or avoid packet reaching the proxy?

* Any special need for chaining of proxies?

08.12.2008 — CORAL Server Design Proposal A. Valassi - 30 it

CERNIT
Package 5 — proxy cache

Department

 Standalone tests

— Attach to a test IRequestHandler that always gives different replies to
the same request: test that reply from cache does not change after
the first time if the cacheable flag is set

* Possibilities for reuse of existing code
— Internal cache implementation of present proxy

08.12.2008 — CORAL Server Design Proposal A. Valassi - 31 ==

N CERNIT
Package 6 — monitoring

Department

e In my diagram:

« Same class for client, server or proxy: Monitor
— Implements IRequestHandler, delegates to an IRequestHandler
— Filters requests/replies: logs statistics while forwarding them

(" S—

log and collect statistics:
#requests by opcode,
response time...

(forward forward
request reply

S
NS

/
| Towestiander | -

08.12.2008 — CORAL Server Design Proposal A. Valassi - 32 ==

_

N CERNIT
Package 6 — monitoring

Department

* Proposed team: Andy, Alex

* Possiblilities for reuse of existing code
— Requirements and implementation to be based on present proxy
— Experience and code from present server monitoring tool

e Standalone tests
— Attach to a test request handler
— Check (against references) log files for well defined test loads

08.12.2008 — CORAL Server Design Proposal A. Valassi - 33 it

_ CERNIT
Package dependencies

Department

* Most libraries depend on CoralServerBase interfaces only
— All components implement or use |ICoralFacade or IRequestHandler

« CoralAccess needs concrete ICoralFacade implementations
— ClientStub: link CoralStubs and CoralSockets if necessary
— ServerFacade for tests: load as a plugin if possible

e Tests and executables need concrete implementations
— Additional CMT dependencies only for tests and executables

— Executable code can be an extremely simple chain of components
» ServerSocketMgr(ServerStub(ServerFacade(ConnectionService())))

08.12.2008 — CORAL Server Design Proposal A. Valassi - 34 it

_ _ CERNIT
Intermediate alternatives

Department

« Keep present proxy as standalone executable
— More difficult to share a monitoring component
— Duplication of code in the handling of sockets

« Keep present packet header
— Add some relational metadata to the IRequestHandler interface

08.12.2008 — CORAL Server Design Proposal A. Valassi - 35 it

