Precision measurements: sensitivity to new physics scenarios

Jens Erler

IF-UNAM

Workshop on

Physics Behind Precision

CERN, February 2-3, 2016

Introduction

Motivation to look for physics beyond the SM

talk by Paul Langacker

In this talk, I will assume the very optimistic case, where the theory uncertainties from unknown higher orders will <u>not</u> be dominant. Progress has been steady in the past.

Example: leading m_t² corrections to ρ-paramter

1-loop Veltman 1977

2-loop (M_H = 0) van der Bij, Veltman 1984 M_H arbitrary Barbieri et al. 1992, Fleischer, Tarasov, Jegerlehner 1993

3-loop (M_H → ∞) Boughezal, Tausk, van der Bij 2004

Key EW observables

```
M<sub>z</sub> ± 2.1 MeV → < 100 keV
```

$$\Gamma_Z$$
 ± 2.3 MeV \Rightarrow < 100 keV

$$R_{\mu}$$
 ± 0.025 \Rightarrow < 0.001

$$R_b \pm 0.00066 \Rightarrow < 6 \times 10^{-5}$$

$$\sigma_{had}$$
 ± 37 pb \Rightarrow ± 4 pb (assumes 0.01% luminosity error)

$$A_{LR}$$
 ± 0.0022 \Rightarrow ± 2×10⁻⁵ (needs 3-loop EW to be useful, 4-loop to match exp.)

Cross-section (pb)

10³

10

Z

TRISTAN

SLC

e⁺e⁻→hadrons

Centre-of-mass energy (GeV)

$$A_{LR}^{FB}$$
(b) ± 0.020 \Rightarrow ± 0.001 (using similar b-tagging improvements as for R_b)

Q_{S}

source	α	uncertainty	FCC
Z decays	0.1203	0.0028	0.00012
W decays	0.117	0.043	0.00018
τ decays	0.1174	+0.0019	
deep inelastic scattering	0.1156	0.0023	0.00018
jet-event shapes in e	0.1169	0.0034	< 0.001
lattice	0.1187	0.0012	
world average	0.1181	0.0013	0.00009

top threshold scan precision gauge coupling unification

Bethke, Dissertori, Salam 2015 JE, Ayres 2015 ON PDG 2016

Number of active neutrinos

currently: $N_v = 2.992 \pm 0.007$

FCC-ee @ 91 GeV:

N_v can be constrained to within ± 0.0006

FCC-ee @ 161 GeV:

the Zγ final state would provide an additional constraint on N_v of better than ± 0.0015

Vacuum Polarization

 g_{μ} –2

 Δr

 $\sin^2\theta_W(0)$

σ_{had} (if luminosity is determined through Bhabba scattering)

strong correlation — can be advantage in

assume Δα_{had} to 1.8 × 10⁻⁵ (from σ_{μμ} and A^{FB}_{μμ}) **★ talks by Fred Jegerlehner and Patrick Janot**

and $m_b = \pm 9$ MeV, $m_c = \pm 8$ MeV from Higgs BRs @ FCC-ee

M_{H}

source	M	uncertainty	FCC-ee
radiative corrections	96	+22	1.3
Higgs branching ratios	126.1	1.9	
direct	125.09	0.24	0.007
global fit	125.11	0.24	0.007

JE, Ayres 2015 PDG 2016

Complementarity: Need EW precision measurements on and off the Z pole

on pole:

sin²θ_W

STU

RPC SUSY

ZZ'

below pole (interference amplitude):

running sin²θ_W ("dark Z")

X parameter

RPV SUSY

vvee, vvuu, vvdd 4-Fermi operators

parity-violating eeee, eeuu, eedd 4-

Fermi operators

above pole:

eeff operators

incl. 2nd/3rd generation f and parity-conserving

STU

	current	FCC-ee
S	± 0.099	± 0.005
T	± 0.116	± 0.007
U	± 0.095	± 0.005
S	± 0.078	± 0.003
Т	± 0.066	± 0.003
Т	± 0.030	± 0.002

Implications of T (p₀) parameter

ρ₀ would constrain VEVs of higher dimensional Higgs representations to ≤ 1 GeV

Sensitivity to degenerate scalar EW doublets up to 2 TeV (using results based on EFT approach

Henning, Lu, Murayama 2014

Non-degenerate multiplets of heavy fermions or scalars **★**

Non-degenerate multiplets of heavy fermions or scalars

$$\Delta \rho_0 = G_F \Sigma_i C_i / (8 \sqrt{2} \pi^2) \Delta m_i^2 \qquad [\Delta m_i^2 \ge (m_1 - m_2)^2]$$

despite appearance there is decoupling (see-saw type suppression of Δm_i^2)

currently: $\Sigma_i C_i / 3 \Delta m_i^2 \le (49 \text{ GeV})^2$

assuming no SM deviation ($\rho_0 = 1 \pm 0.000012$) \Longrightarrow FCC-ee: $\Sigma_i C_i / 3 \Delta m_i^2 \le (8 \text{ GeV})^2$

assuming central value unchanged from today $(\rho_0 = 1.00037 \pm 0.000012) \Longrightarrow$

FCC-ee: Σ_i C_i/3 Δm_i^2 = (34 ± 1 GeV)²

Other oblique parameters

At dimension 6 and at first order in the new physics \implies 4 bosonic operators.

Can be mapped onto S, T, W, Y

Henning, Lu, Murayama 2014 Fan, Reece, Wang 2014

E.g., a stop doublet of degenerate soft mass M contributes

 $S \sim - m_t^2 / (6\pi M^2) + O(M^{-4})$

Heinemeyer, Hollik, Weiglein, Zeune 2013

Non-oblique parameters

long-standing deviation in $A_{FB}(b)$ from LEP 1

currently:

```
\rho_{\rm b} = 0.056 \pm 0.020
```

$$\kappa_b = 0.182 \pm 0.068 (2.7 \sigma)$$

difficult to explain without affecting / tuning Rb

FCC-ee: $\rho_b \pm 0.002$ and $\kappa_b \pm 0.007$

or better when including $A_{FB}(b)$ in addition to $A_{FB}^{LR}(b)$

These results are virtually independent of STU (fixed or floating)

Conclusions

Unprecedented precision possible at FCC-ee — assuming <u>major</u> advancements in higher order perturbative calculations to keep the theory uncertainties <u>below</u> the experimental ones.

Many results may even be included after the end of the FCC-ee.

E.g., the T parameter is sensitive to new physics with O(1) couplings up to

 $\Lambda \sim v / \sqrt{\Delta \rho} \sim 70 \text{ TeV}$

BACKUP

Fan, Reece, Wang 2014