Precision Measurements & Their Sensitivity to New Physics

- Precision experiments
- Implications for the SM and beyond
- Paradigms and realizations
- The FCC-ee

Physics Behind Precision, CERN (2/2/16)

Precision Physics: Past and Present

- Weak neutral current (ν scattering; APV; polarized e^- ; e^+e^- ; \cdots)
- Z, W (S $p\bar{p}$ S, LEP, SLC, Tevatron, LHC)
- Higgs
- Triple/quartic gauge vertices; $W_L W_L o W_L W_L$
- Weak charged current (β , μ , \cdots decay; *CP* violation; unitarity triangle)
- QED (classic tests; $g_{\mu} 2$; μ Lamb shift (proton radius))
- t physics
- EDMs
- Flavor physics, rare decays, FCNC, neutrinos
- Precision cosmology

Physics Behind Precision, CERN (2/2/16)

Paul Langacker (IAS)

Physics Behind Precision, CERN (2/2/16)

Paul Langacker (IAS)

Results of the Precision Program

• Established electroweak SM to first approximation

gauge theory (V, A; W, Z); $SU(2) \times U(1)$; fermion reps., chiralities; $\sin^2 \theta_W$; t; ν_{τ} required

Amaldi et al., Phys.Rev. D36 (1987)

Physics Behind Precision, CERN (2/2/16)

Schaile and Zerwas, Phys.Rev. D45 (1992)

LEPEWWG

- Established SM at loop level (QED, EW, QCD, mixed)
 - Renormalization theory vindicated
 - m_t , M_H successfully predicted

• The top quark prediction

- Updated from Chris Quigg, Phys.Today (1997), hep-ph/9704332
- Current indirect value: 177.0(2.1) GeV (Erler and Freitas, PDG);
 direct: 173.21(0.87) GeV (LHC/Tevatron, PDG)

Erler and Freitas, PDG

Gfitter

LEPEWWG

- The Z pole watershed: new TeV-scale physics severely constrained
 - Nondecoupling (many forms of strong coupling, DSB): several %
 - Decoupling (e.g., SUSY): < 1%
- Limits on weak coupling (oblique: EWSB, chiral fermions; Z', exotics)

Erler et al: 0906.2435

• Hints of new physics? (A_{LR} vs $A_{FB}^{b\bar{b}}$; $g_{\mu} - 2$; proton radius)

Physics Behind Precision, CERN (2/2/16)

• Precise SM parameters

- $-\sin^2 \hat{ heta}_W(M_Z^2) = 0.23126(5)$ (PDG)
- $lpha_s(M_Z) = 0.1193(16)$ (Z-pole) vs 0.1185(6) (all), (PDG)
- Gauge couplings (consistent with SUSY gauge unification)

- Neutrino counting (2.984(8) light active ν)

The Standard Model

- Spectacularly successful/unsuccessful
- Mathematically consistent
- Describes nature to 10^{-16} cm
- Higgs discovery (not DSB; but composite/extra dim?, EFT?)
- But, complicated, fine-tuned, families, many parameters
- Missing: dark matter and energy, $n_B n_{\bar{B}}$, quantum gravity, m_{ν} type

The Paradigms

naturalness (TeV physics)

tuning (landscape?)

- Naturalness or tuning
- Uniqueness or environment
- Minimality or remnants

Naturalness or Tuning

- ATLAS/CMS/LHCb: no clear sign of supersymmetry, strong dynamics, or other new physics
 - 750 GeV diphoton? 2 TeV diboson? B anomalies?
- Higgs-like particle: consistent with elementary Higgs
 - SM: rather light (metastable vacuum or new physics below 10^{11} GeV)
 - MSSM: rather heavy (need heavy stop or large mixing)

Predicted range for the Higgs mass

• Higgs mass² very unnatural (tuning by 10³⁴) unless TeV physics (supersymmetry, composite Higgs, extra dimensions)

- Is naturalness a good guide? cf dark energy (tuning by 10¹²⁰) (environmental solution?)
- Even for higher-scale new physics: little (baby) hierarchy problem (but reduces FCNC, EDM constraints)

Uniqueness or Environment

- Gauge interactions: determined by symmetry (but groups, representations, SSB)
- Yukawa interactions: unconstrained, unless new symmetries/principles (local, global, discrete, stringy)
- The uniqueness paradigm: simple, unique, underlying theory

Kepler's Mysterium Cosmographicum

- The environmental paradigm (cf., planetary orbits)
 - No simple explanation of parameters
 - String landscape: may be $\gtrsim 10^{600}$ vacua (de Sitter?); no known selection principle
 - Subset habitable, with different groups, remnants, hierarchy mechanisms, parameters
 - Multiverse sampled by eternal inflation?
 - Environmental selection? (A word?)

Minimality or Remnants

• Bottom up: minimality often assumed

- Top down: new particles/interactions (remnants) often "slip through net"
 - Z', vector fermions, extended Higgs, leptoquarks, diquarks; dark sectors

The Realizations

- Strong dynamics at low scale (composite Higgs, · · ·)
- Low fundamental scale (large or warped dimensions, low string scale)
- Perturbative connection to high scale (string, GUT)
 - Supersymmetry (nonminimal?), · · ·
 - Remnants?
 - Nothing
- Multiverse? (not exclusive)

Future Collider Proposals

- HL-LHC (CERN): (*pp*, 14 TeV, 3000 fb⁻¹)
- ILC (Japan): $(e^+e^-; 250, 350, 500 \text{ GeV} (\rightarrow 1 \text{ TeV}),)$ ILC Higgs: 1310.0763
- CLIC (CERN): $(e^+e^-; 350 \text{ GeV} \rightarrow 3 \text{ TeV},)$ CLIC: 1209.2543, 1307.5288
- CEPC (China): $(e^+e^-; 240 \text{ GeV},)$ CEPP: cepc.ihep.ac.cn
- SPPC (China): (*pp*, 100 TeV?)
- FCC (CERN)

The FCC-ee

- FCC-ee (TLEP)
- $\bullet~{\sim}100~{
 m km}$
- e^+e^- : precision EW, Higgs, *t*, BSM
- 90 (Z), 125 (H)?, 160 (WW), 240 (H), 350 (tt) GeV
- e^{\pm} polarization?
- $10^{12}-10^{13}\,Z$'s (Tera-Z) $2 imes 10^8\,WW$, $10^5\,H$, $10^6\,tar{t}$

- FCC-hh (VHE-LHC)
 - pp: EWSB, BSM
 - $2040-2050: 80-100 \ TeV$

FCC-ee (TLEP): 1308.6176

- $10^{12} 10^{13} \, Z$'s (LEP: 1.7×10^7 ; SLC: 6×10^5 , $P_{e^-} \gtrsim 0.75$)
- Combine with WW and $t\overline{t}$ threshold scans
- Need significant improvement in theory calculations (3 loop)

quantity	precision	current
M_Z	100 keV	2.1 MeV
Γ_Z	100 keV	2.3 MeV
$\sin^2 \hat{ heta}_W(M_Z^2)$	$6 imes 10^{-6}$	$5 imes 10^{-5}$
$\Delta lpha(M_Z)/lpha$	$1.1 imes10^{-4}$	$3 imes 10^{-5}$
M_W	300 keV	15 MeV
$lpha_s(M_Z)$	0.0001	0.0006
m_t	10 MeV	0.9 GeV
$N_{ u}\left(Zm{\gamma} ight)$	0.001	0.008

P. Janot: 1512.05544

Paul Langacker (IAS)

- Sensitive to Z Z', W W', f f' mixing (vector exotics, composite Higgs, \cdots); unitarity violation
- Rare/invisible decays: $Z, H \rightarrow$ dark matter; sterile ν ; FCNC; universality violation
- Oblique corrections: Higgs; EWSB; chiral fermions; multiplet splitting
- Effective operators; triple gauge couplings

Barducci et al: 1504.05407

Blondel et al: 1411.5230

Henning ea, 1404.1058

Ellis, You: 1510.04561

Z-Pole and Higgs Factory Reach

• Composite Higgs at scale
$$f$$

 $\kappa_{W,Z}=\sqrt{1-rac{v^2}{f^2}},\ S\sim rac{v^2}{4f^2}$

• MSSM
$$ilde{t}_L$$

 $\kappa_g - 1 \sim rac{m_t^2}{4m_{ ilde{t}_L}^2}$
 $T \sim rac{m_t^4}{16\pi s_W^2 M_W^2 m_{ ilde{t}_L}^2}$

Experiment	κ_Z (68%)	f (GeV)	$\kappa_g~(68\%)$	$m_{\tilde{t}_L}$ (GeV)
HL-LHC	3%	1.0 TeV	4%	430 GeV
ILC500	0.3%	3.1 TeV	1.6%	690 GeV
ILC500-up	0.2%	3.9 TeV	0.9%	910 GeV
CEPC	0.2%	3.9 TeV	0.9%	910 GeV
TLEP	0.1%	5.5 TeV	0.6%	1.1 GeV
Experiment	S (68%)	f (GeV)	T (68%)	$m_{\tilde{t}_L} (\text{GeV})$
Experiment ILC	S (68%) 0.012	f (GeV) 1.1 TeV	T (68%) 0.015	$\frac{m_{\tilde{t}_L} \text{ (GeV)}}{890 \text{ GeV}}$
Experiment ILC CEPC (opt.)	S (68%) 0.012 0.02	f (GeV) 1.1 TeV 880 GeV	T (68%) 0.015 0.016	$m_{\tilde{t}_L} ({ m GeV}) 890 { m GeV} 870 { m GeV}$
Experiment ILC CEPC (opt.) CEPC (imp.)	S (68%) 0.012 0.02 0.014	f (GeV) 1.1 TeV 880 GeV 1.0 TeV	T (68%) 0.015 0.016 0.011	$m_{\tilde{t}_L}$ (GeV) 890 GeV 870 GeV 1.1 GeV
Experiment ILC CEPC (opt.) CEPC (imp.) TLEP-Z	S (68%) 0.012 0.02 0.014 0.013	f (GeV) 1.1 TeV 880 GeV 1.0 TeV 1.1 TeV	T (68%) 0.015 0.016 0.011 0.012	${m_{{{\tilde t}_L}}}({ m GeV}) \\ 890{ m GeV} \\ 870{ m GeV} \\ 1.1{ m GeV} \\ 1.0{ m TeV} \end{cases}$

Fan, Reece, Wang: 1411.1054

References

- Bicer et al, First Look at the Physics Case of TLEP: 1308.6176
- Henning, Lu, Murayama What do precision Higgs measurements buy us?: 1404.1058
- Fan, Reece, and Wang, Possible Futures of Electroweak Precision: ILC, FCC-ee, and CEPC: 1411.1054
- Blondel et al, Search for Heavy Right Handed Neutrinos at the FCC-ee: 1411.5230
- R. Tenchini, Precision Electroweak Measurements at FCC-ee: 1412.2928
- Barducci et al., Top pair production at a future e^+e^- machine in a composite Higgs scenario:1504.05407
- Ellis and You, Sensitivities of Prospective Future e+e- Colliders to Decoupled New Physics: 1510.04561

Physics Behind Precision, CERN (2/2/16)

- P. Janot, Precision measurements of the top quark couplings at the FCC: 1510.09056
- P. Janot, Direct measurement of $\alpha_{QED}(m_Z)$ at the FCC-ee: 1512.05544
- M. Dam, Precision Electroweak measurements at the FCC-ee: 1601.03849
- D. d'Enterria, Physics case of FCC-ee: 1601.06640

Conclusions

- Standard Model is very successful, but complicated, fine-tuned
- **Precision physics:** major role in establishing SM and restricting BSM
- Major questions
 - Naturalness or tuning
 - Uniqueness or environment
 - Minimality or remnants
 - Unification (strings/landscape, GUTs, SUSY, remnants) or strong coupling/compositeness
 - Dark matter/energy; vacuum stability; baryogenesis; ν mass
- Signatures often similar (e.g., 750 GeV diphoton)
- The challenge: distinguishing (multiple/complementary probes, effects)

• Complementary probes

- $-e^+e^-$ (precision Z-pole and above, Higgs factory)
- Other precision and flavor physics (g_{μ} 2, rare decays/processes, heavy quark, neutrino)
- Dark matter searches, cosmology
- Energy frontier (LHC, *pp* at 100 TeV scale)
- The FCC-ee is especially promising

Typical Stringy Effects

- Z' (or other gauge)
- Extended Higgs/neutralino (doublet, singlet)
- Quasi-chiral exotics
- Leptoquark, diquark, R_P couplings
- Family non-universality (from different origins) (Yukawas, U(1)')
- Various ν mass mechanisms (HDO: Majorana or Dirac; D (string) instantons: non-minimal seesaw, Weinberg op, Dirac, sterile)
- (Quasi-)hidden sectors (strong coupling? SUSY breaking? dark matter? random?); may be portals (exotics, Z', Higgs)

Physics Behind Precision, CERN (2/2/16)

- Perturbative global symmetries from anomalous U(1)' (exponentially-suppressed breaking)
- Nonstandard hypercharge embeddings/normalizations
- Fractionally charged color singlets (e.g., $\frac{1}{2}$) (confined?, stable relic? millicharged?)
- Large/warped dimensions, low string scale (TeV black holes, stringy resonances)
- Axions, moduli, cosmic strings
- Time/space/environment-varying couplings
- LIV, VEP (speeds, decays, [oscillations] of HE γ , e, gravity waves, [ν 's])

Future/Proposed Precision Program at Colliders

Large Hadron Collider (LHC), CERN

- pp: Higgs, EW, QCD, BSM, \cdots
- 2009-2012: 7-8 TeV, 30 fb⁻¹
- 2015-2022: 13-14 TeV, 300 fb⁻¹
- 2025-2035: HL-LHC, 14 TeV, 3000 fb⁻¹
- 33 TeV HE-LHC?

International Linear Collider (ILC), Japan

- e^+e^- : Higgs factory, Z-pole, WW, $t\overline{t}$, Z', ...
- 31 km (\rightarrow 50)
- 250, 350, 500 GeV
 (→ 1 TeV)
- $ullet \ P_{e^-} \sim 80\% \ (P_{e^+} \sim 50\text{-}60\%)$
- Z-pole (Giga-Z)

ILC TDR: www.linearcollider.org/ILC/Publications/Technical-Design-Report

ILC Higgs: 1310.0763

Compact Linear Collider (CLIC), CERN

- e^+e^- : Higgs, $t\bar{t}$, BSM
- Two beam acceleration
- 48 km
- ullet ~ 2030 : 350 GeV ightarrow 3 TeV
- Polarized e^- (e^+ ?)

CLIC CDR: clic-study.web.cern.ch/content/conceptual-design-report

CLIC: 1209.2543, 1307.5288

Circular Electron Positron Collider (CEPC), China

Figure 3.3: Illustration of the CEPC-SPPC ring sited in Qinghuangdao. The small circle is 50 km, and the big one 100 km. Which one will be chosen depends on the funding scenario.

- e^+e^- : Higgs factory, Z, WW, Z', \cdots
- 50 or 100 km
- 240 GeV (H)
- Z-pole $(10^{10} 10^{11} Z's)$
- Super *pp* Collider, (SPPC)
 - *pp*: BSM, naturalness,
 EWBG, DM
 - 100-140 TeV

CEPP: cepc.ihep.ac.cn

Physics Behind Precision, CERN (2/2/16)