FCC-ee Míní-Workshop: "Physics Behínd Precísion" 2-3 February 2016, CERN

(top) FCNC at the FCC-ee u/c $\gamma, Z, g, H, ``X"$ INFN Barbara Mele CERN, 3 February 2016 di Fisica Nucleare Sezione di Roma

Outline

- Forewords
- LHC: present and future bounds on top FCNC
- FCC-ee : two running phases relevant for top FCNC :
 - \gg JS \geq 350 GeV \rightarrow 10⁶ top pairs above ttbar threshold
 - (BR~10⁻⁵ for rare decays with distinctive signatures)
 - ▷ $\int S = 240 \text{ GeV}$ with $\int L \sim 10 \text{ ab}^{-1} \rightarrow \text{single top ee} \rightarrow t q$
- NOT A REVIEW ! Details on two recent developments:
 - ▷ ee → t q (hadronic top channel) (Biswas, Margaroli, BM)
 - ▶ $\dagger \rightarrow q \neg \gamma$ → new BSM FCNC signature !

jet + dark-photon m_{top} resonance ! (Gabrielli, BM, Raidal, Venturini)

special thanks to S.Biswas and E.Gabrielli

Outlook

BM, talk at 7th FCC-ee Phys. WS June 2014 ever since its discovery, the top quark has never been produced and studied in such a clean environment as the one expected in e⁺e⁻ collisions

- e⁺e⁻ collisions will almost allow to trace back top-quark final states on an event-by-event basis
- this will open the opportunity to look at details of top production and kinematics that is unthinkable in hadron collisions (relevant strategies mostly still to be developed ...)
- rare top decays is one of the (many) top physics chapters that would widely benefit from such spectacularly clean environment ! one example

inclusive searches for exotic t decays via recoil system

a) define criteria to tag
a Wb/Wj system
as a (SM) top quark

b) look for events containing
a top-system with
a veto on a 2nd tag
(i.e. recoil system does not pass
the SM top-system criteria)

c) full simulation needed to assess sensitivity ($<\% \sigma$?)

d) get model-independent bounds on BR(top)exotica !

FCNC top (really rare !) decays in the SM : NOT measurable !

(Aguilar-Saavedra hep-ph/0409342)

New Physics

Barbara Mele

CERN, 3 February 2016

Barbara Mele

bounds on tqZ and $tq\gamma$

ILC versus full LHC

Process	Br Limit	Search	Dataset
$t \to Zq$	2.2×10^{-4}	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to Zq$	7×10^{-5}	ATLAS $t\bar{t} \to Wb + Zq \to \ell\nu b + \ell\ell q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to Zq$	$5(2) \times 10^{-4}$ *	ILC single top, $\gamma_{\mu} (\sigma_{\mu\nu})$	$500 {\rm ~fb^{-1}} {\rm ~250 ~GeV}$
$t \to Zq$	$1.5(1.1) \times 10^{-4(-5)}$	ILC single top, $\gamma_{\mu} (\sigma_{\mu\nu})$	$500 {\rm ~fb^{-1}} 500 {\rm ~GeV}$
$t \to Zq$	$1.6(1.7) \times 10^{-3}$	ILC $t\bar{t}, \gamma_{\mu} (\sigma_{\mu\nu})$	500 fb^{-1} 500 GeV
$t \to \gamma q$	8×10^{-5}	ATLAS $t\bar{t} \to Wb + \gamma q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \rightarrow \gamma q$	2.5×10^{-5}	ATLAS $t\bar{t} \to Wb + \gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to \gamma q$	$6 imes 10^{-5}$ *	ILC single top	$500 \text{ fb}^{-1} 250 \text{ GeV}$
$t \to \gamma q$	6.4×10^{-6}	ILC single top	$500 \ {\rm fb^{-1}} \ 500 \ {\rm GeV}$
$t \to \gamma q$	1.0×10^{-4}	ILC $t\bar{t}$	$500 {\rm ~fb^{-1}} 500 {\rm ~GeV}$

Snowmass Top Quark Working Group Report 1311.2028

* extrapolated

 $\sigma_{\mu\nu}$ terms grow with V^{μ} momentum $q^{m\nu}$ (~ \int S in single top)

 $\Rightarrow e^+e^- \rightarrow \gamma, Z(q^\mu) \rightarrow tq$ at ILC, most sensitive channel (!)

(LEP2 and ILC)

Han and Hewett 9811237 Bar-Shalom, Wudka 9905407 Aguilar-Saavedra, Riemann 0102197

(FCC-ee, leptonic top $t \to b \ell \nu$) Khanpour at al. 1408.2090

√S= 240 GeV (large cross section and large lumi at FCC-ee) versus

 \sqrt{S} = 350, 500 GeV (lower bckgd and more sensitive to $\sigma_{\mu\nu}$ terms)

	√S = 240 GeV	γ	4811.7 $ \lambda_{qt} ^2$
	<i>(-sections (fb)</i>	Z, γ_{μ}	2057.4 $ \mathcal{X}_{qt} ^2$
New Analysis :	=	$Z, \sigma_{\mu u}$	3218.0 $ \kappa_{qt} ^2$
FCC-ee, Hadronic	top $t ightarrow bjj$	(Biswas,	Margaroli, BM) 🛁

maximum allowed σ 's by presents bounds on BR(top)^{FCNC}

Barbara Mele

CERN, 3 February 2016

11

Simulation

- Model file for FCNC interactions has been implemented using FeynRules and MadGraph5_aMC@NLO interface.
- Signal (tj) and Background (Wjj) events are generated in MadGraph5_aMC@NLO then interfaced with PYTHIA for showering and hadronization.
- ► Jets are defined by the iterative cone algorithm of PYTHIA with a cone size of R = 0.4
- ► Jet energy resolution as for ILC detectors $\frac{\sigma(E)}{E} = \frac{30\%}{\sqrt{E}}$
- True b-jet tagging efficiency and fake jet rejection for c and light quark jets have been incorporated by generating random numbers on an event-by-event basis according to a given efficiency \(\epsilon_b\).

b-tagging

- b-tagging is crucial as background does not contain any b-quark initiated jet.
- An optimised choice of fake jet rejection may be more useful than a large b-tagging efficiency.

[CLICdp-Note-2014-002, Taikan Suehara, ICHEP-2014]

Higgs Hadronic Decays: Flavor Tagging

ILC detectors allow high performance b/c/g tagging Precise measurement of BR(H→bb, cc, gg)

We have worked with true b-jet tagging efficiency of 60% and 80% and corresponding c (light)-jet rejection factor of 250 (1000) and 10 (100), respectively.

Signal

$$e^+e^- \rightarrow tj + h.c. \rightarrow bWj \rightarrow bjjj$$

basic cuts on jets : $p_T^{j,b} > 20$ GeV, $|\eta^{j,b}| < 2.5$, and $\Delta R(jj, bb, bj) > 0.4$

Background

- Dominant background : $e^+e^- \rightarrow W_{jj} \rightarrow j_{jjj}$
- Other 4-jets background (*e.g.* $q\bar{q}b\bar{b}$) checked to be small.

	$\epsilon_b = 60\%$	$\epsilon_b = 80\%$
tcA	903.05 $ \lambda_{qt} ^2$	$1073.96 \lambda_{qt} ^2$
tc Z,γ_{μ}	$378.93 \mathcal{X}_{qt} ^2$	$446.41 \mathcal{X}_{qt} ^2$
$tcZ, \sigma_{\mu u}$	$596.11 \kappa_{qt} ^2$	$710.16 \kappa_{qt} ^2$
Wjj	47.72	686.77

Table : Cross section normalisation (in fb) for 4-jet final states after basic cuts, including *b*-tagging and $W \rightarrow jj$ BR

Event topology: Signal *tcA* (magenta), *tcZ*_{, μ} (green), *tcZ*_{, $\mu\nu$} (blue) and background *Wjj* (red) kinematics at $\sqrt{s} = 240$ GeV [assumes $\epsilon_b = 80\%$]

CERN, 3 February 2016

Cut flow

After applying basic selection cuts, we model signal events with the following (ordered) set of cuts:

 Select all events in which a di-jet system passes the W requirement with 65 GeV < M_{jj} < 90 GeV

 Rejects events if the invariant mass of the remaining dijet system peaks around a second W within a mass window 65 GeV < M_{ii} < 85 GeV

- A jet, which is tagged as a *b*-jet, is then combined with the reconstructed *W* to get a top system satisfying
 150 GeV < M_{bW} < 175 GeV
- ► Finally, the jet which is neither a *b*-jet nor a jet coming from a *W*-decay is required to have |*p*_{jet}| <65 GeV</p>

Efficiency: 47% for signal 5% for bckgr (for $\epsilon_b = 60\%$)

	$\epsilon_b = 60\%$	$\epsilon_b=80\%$
tcA	426.17 $ \lambda_{qt} ^2$	479.28 $ \lambda_{qt} ^2$
tcZ, γ_{μ}	$178.82 \mathcal{X}_{qt} ^2$	$199.22 \mathcal{X}_{qt} ^2$
$tcZ, \sigma_{\mu\nu}$	$281.32 \kappa_{qt} ^2$	$316.92 \kappa_{qt} ^2$
Wjj	2.40	34.35

Cross section normalisation (in fb) after complete cut flow

FCNC Exclusion Limits (95% CL): Single top (hadronic) Biswas, Margaroli, BM $\sqrt{S} = 240 \text{ GeV}$ [0.1, 0.5, 10 ab⁻¹]

$t \alpha \Lambda$	Luminosity	$\epsilon_b = 60\%$		$\epsilon_b = 80\%$	
lyA.	(fb^{-1})	λ_{qt}	BR	λ_{qt}	BR
	100	$2.79 \cdot 10^{-02}$	$3.33 \cdot 10^{-04}$	$4.99 \cdot 10^{-02}$	$1.07 \cdot 10^{-03}$
	500	$1.83 \cdot 10^{-02}$	$1.43 \cdot 10^{-04}$	$3.32 \cdot 10^{-02}$	$4.72 \cdot 10^{-04}$
	10 ⁴	$8.60 \cdot 10^{-03}$	$3.17 \cdot 10^{-05}$	$1.57 \cdot 10^{-02}$	$1.06 \cdot 10^{-04}$
$ta7 \sim \cdot$	Luminosity	$\epsilon_b = 60\%$		$\epsilon_b = 80\%$	
$\eta \mu$.	(fb^{-1})	\mathcal{X}_{qt}	BR	\mathcal{X}_{qt}	BR
	100	$4.30 \cdot 10^{-02}$	8.77·10 ⁻⁰⁴	$7.73 \cdot 10^{-02}$	$2.82 \cdot 10^{-03}$
	500	$2.83 \cdot 10^{-02}$	$3.78 \cdot 10^{-04}$	$5.15 \cdot 10^{-02}$	$1.25 \cdot 10^{-03}$
	104	$1.32 \cdot 10^{-02}$	8.22·10 ⁻⁰⁵	$2.43 \cdot 10^{-02}$	2.79·10 ⁻⁰⁴
	Luminosity	$\epsilon_b =$	= 60%	$\epsilon_b =$	= 80%
$tqZ, \sigma_{\mu u}$	(fb^{-1})	κ_{qt}	BR	κ_{qt}	BR
	100	$3.43 \cdot 10^{-02}$	$4.32 \cdot 10^{-04}$	$6.13 \cdot 10^{-02}$	$1.38 \cdot 10^{-03}$
	500	$2.25 \cdot 10^{-02}$	$1.86 \cdot 10^{-04}$	$4.08 \cdot 10^{-02}$	$6.11 \cdot 10^{-04}$
	10 ⁴	$1.06 \cdot 10^{-02}$	$4.12 \cdot 10^{-05}$	$1.93 \cdot 10^{-02}$	$1.37 \cdot 10^{-04}$

hadronic top twice as sensitive to BR(top)^{FCNC} as leptonic top

Khanpour at al. 1408.2090

a little stronger bounds expected at $E_{cm}(e+e-) \sim 350 \text{ GeV}$

FCNC's mediated by Dark Photons

Based on NP Model explaining Yukawa hierarchy via a Hidden Sector (HS) with extra unbroken Dark U(1)_F (→ massless dark photon) (Gabrielli, Raidal, arXiv:1310.1090; Ma, arXiv:1311.3213)

➢ HS contains N_f heavy fermions (Df=Dark Matter ?) charged under Dark U(1)_F

▷ Chiral Simmetry spont. broken in HS via non-perturbative effects (higherderivative in DP field ~ 1/Λ → Lee-Wick ghosts)

→ Dark fermions get M_{Df} masses depending on their U(1)_F charge q_{Df} → exponentially-spread Df spectrum (for integer charges q_{Df} =1, 2, 3, 4...)

Flavor and Chiral Sym Breaking transferred to (radiative) Yukawa couplings at one-loop via (heavy) squark/slepton-like scalar messangers

→ Yukawa hierarchy appears in visible sector, too !

plenty of new signatures at colliders involving stable dark photons (exploration just started !) (invisible and massless)

mono-photon resonant signature

Higgs non-decoupling effects (just as in SM) can enhance BR

Gabrielli,Heikinheimo, BM, Raidal, arXiv:1405.5196

Higgs momentum balanced by a massless invisible system

Biswas, Gabrielli, Heikinheimo, BM, 1503.05836

resonant mono-photon signature (LHC)

(A_1) 5	$60 \text{ GeV} < p_T^{\gamma} < 63 \text{ GeV} (A_2) 60 \text{ GeV}$	$N < p_T^{\gamma} < p_T^{\gamma}$	63 GeV
$H \rightarrow \bar{\gamma} \gamma$	σ (fb)	$\sigma \times A_1$	$\sigma \times A_2$
	Signal $BR_{H\to\gamma\bar{\gamma}} = 1\%$	65	34
$F_{miss} \sim F_v \sim m_{\rm H}/2$	γj	715	65
	$\gamma Z o \gamma u \overline{ u}$	157	27
	$jZ \to j \nu \bar{\nu}$	63	11
$M_T = \sqrt{2p_T^{\gamma} \not\!\!\! E_T (1 - \cos \Delta \phi)}$	$W \to e\nu$	22	0
	Total background	957	103
	$S/\sqrt{S+B} \ (BR_{H\to\gamma\bar{\gamma}}=1\%)$	9.1	13.0
~ 500	$S/\sqrt{S+B} \ (\mathrm{BR}_{H\to\gamma\bar{\gamma}}=0.5\%)$	4.6	6.9
	$\nabla \overline{\gamma} \gamma = 07$	8TeV/2	20fb ⁻¹)
$\sum_{n=1}^{n} 50$ $\sqrt{7}$	$R_{H}^{\prime\prime}=5\%$ model-inc	depend	lent
bp 10	measureme	nt of	BR _{DP} !
60 ⁷ 70 80 90 100	110 120 130 Gabrielli,Heikinhe arXiv:1405.5196	eimo, BM, F	Raidal,
(parton-level analysis) M_T [GeV]	CERN, 3 February 2016		21

top FCNC's mediated by Dark Photons

Gabrielli, BM, Raidal, Venturini (in preparation)

also :

new heavy states in loops contribute with same flavor matrix (but different U(1) charges) to FCNC decays into photon and dark photon

$$BR(t \to (c, u) \bar{\gamma}) = \frac{\bar{\alpha}}{\alpha} \left(\frac{q_3^U f_2(x_3^U, \xi_U)}{e_U \bar{f}_2(x_3^U, \xi_U)} \right)^2 BR(t \to (c, u) \gamma)$$

LHC (present bounds):

 $\begin{array}{rcl} \mathrm{BR}^{\mathrm{exp}}(t \to u \, \gamma) &< 1.3 \times 10^{-4} \\ \mathrm{BR}^{\mathrm{exp}}(t \to c \, \gamma) &< 1.7 \times 10^{-3} \end{array} \xrightarrow{\mathrm{BR}^{(t \to u \gamma)}(t \to u \, \bar{\gamma})} &< 1.8 \times 10^{-2} \left(\frac{\bar{\alpha}}{0.1}\right) \\ \mathrm{BR}^{(t \to c \gamma)}(t \to c \, \bar{\gamma}) &< 2.3 \times 10^{-1} \left(\frac{\bar{\alpha}}{0.1}\right) \end{array}$

but imposing vacuum-stability and dark-matter bounds gives BR($t \to q \, \bar{\gamma}$) < 10^{-4}

Barbara Mele

new FCNC signatures at LHC in top production from stable and invisible dark photons

→ new FCNC signature at FCC-ee (10⁶ top pairs → BR ~ 10⁻⁵) invisible and massless dark photons

Outlook

- great control on bckgrs makes ee colliders excellent tools for looking at top rare decays !
- top FCNC signals at colliders only from BSM effects !
- FCC-ee at 240 GeV has potential on tc(u)y / tc(u)Z via single-top production comparable to HL-LHC
 - → 350 GeV run expected to be slightly better (and benefits from top-pair channel, too !)
- new FCNC top signatures from top decay into a massless dark photon