Dijet Azimuthal Decorrelation

Cosmin Dragoiu, L. Apanasevich, N. Varelas

US CMS JTerm III, 14 January 2009

OUTLINE

- Motivation
- Azimuthal decorrelation
- DØ results
- $\Delta \phi$ decorrelation studies at CMS
- Summary

MOTIVATION

- At LHC, QCD will be probed at energies never achieved in previous experiments.
- Dijet azimuthal decorrelation probes the dynamics of QCD radiative processes.
- An accurate description of QCD radiative processes in event generators is important for precision measurements and searches for new physics (Higgs boson, SUSY).

Δφ **DECORRELATION**

- An important aspect of pQCD and MC event generators is to accurately account for the radiation of quarks and gluons.
- The azimuthal angle between the two leading jets in an event is sensitive to the effect of this radiation.

$$\Delta \varphi = |\varphi_{jet1} - \varphi_{jet2}|$$

- At leading order the two leading jets have equal transverse momentum and correlated azimuthal angle ($\Delta \phi = \pi$).
- Higher order corrections cause azimuthal decorrelations. Soft radiation causes small deviations from π , while values significantly lower than π indicate the presence of hard radiation.

Δφ **DECORRELATION**

$\Delta \phi$ distributions:

 provide a test of pQCD over a wide range of jet multiplicities without the need to reconstruct the additional jets The observable $rac{1}{\sigma}\cdotrac{d\sigma}{d\Deltaarphi}$

 offer a tool to study the transition between soft and hard QCD processes

DØ RESULTS

- Data were collected with the DØ detector in Run II using $p\bar{p}$ collisions at $\sqrt{s}=1.96~{\rm TeV}$
- Jets were reconstructed using a seed-based cone algorithm with radius R = 0.7
- The events were selected using single jet triggers with multiple thresholds. The p_T bins were defined such that the trigger efficiency is greater than 99%
- The p_T of the second jet was required to be greater than 40 GeV. Both jets have |y| < 0.5
- NLO pQCD provides a good description of data, while the LO calculation has a limited applicability

DØ RESULTS

- HERWIG describes the data well over the entire $\Delta \phi$ range.
- PYTHIA with default parameters does not perform that well. The distribution peaks higher at π and lies significantly below the data over most of the $\Delta \phi$ range.
- However, by increasing the initial state radiation (ISR), PYTHIA can be tuned to better describe the data.

Δφ STUDIES AT CMS

- Performed with MC samples generated using PYTHIA and GEANT for 10 pb⁻¹ and 10 TeV (iCSA08)
- Jets are reconstructed using a seedless infrared safe cone algorithm (SISCone) with radius R = 0.5
- The events are selected using single jet triggers with different thresholds
- Six p_T bins of the leading jet are defined such that the triggers are fully efficient
- No p_T requirement on the second jet
- Both jets are restricted to central rapidity region, lyl < 1.1

Δφ **DISTRIBUTIONS**

• For higher p_T bins the $\Delta \phi$ distributions peak higher at π ; more correlated jets

DETECTOR EFFECTS

- Detector effects such as jet energy and position resolution, jet energy scale, etc., can affect the $\Delta \phi$ distributions
- The magnitude of these effects can be evaluated by taking the ratio between reconstructed and generated $\Delta\phi$ distributions
- For $\Delta \phi > 2\pi/3$ the detector effects are relatively small
- Below $2\pi/3$, the detector effects are more visible, especially for lower p_T bins

JET POSITION RESOLUTION EFFECT

- Generated jets are smeared in φ using the MC position resolution function
- Insensitive to jet position resolution

JET ENERGY RESOLUTION EFFECT

- Generated jets are smeared in p_T using the energy resolution function
- Sensitive to jet energy resolution

10% JES UNCERTAINTY EFFECT

• Small effects seen for $\Delta \phi < 2\pi/3$

SUMMARY

- Dijet azimuthal decorrelation is sensitive to high order radiation without explicitly measuring the radiated jets
- Study the transition between soft and hard QCD processes
- NLO pQCD provides a good description of Tevatron data
- Insensitive to jet position resolution and jet reconstruction efficiency
- Sensitive to jet energy resolution. Explains the difference between reconstructed and generated jets
- JES uncertainties have negligible impact
- Can be done with early data !!!