

DiJet Angular Distribution

Len Apanasevich, <u>Agata Smoron</u>, Nikos Varelas University of Illinois at Chicago (UIC)

Outline

- Theory and motivation
- Methodology
- DØ and CDF results from Run II
- CMS studies
- Summary

Motivation for the analysis

- The dijet angular distribution with respect to the beam direction probes the dynamics of the underlying process
- At small center of mass scattering angles the dijet angular distribution is similar to Rutherford scattering (t-pole exchange)
 - Many new physics models predict angular distributions that are much more isotropic
- Dijet angular distribution is relatively insensitive to the parton distribution function (PDF) and provides an excellent test of QCD and new physics processes like quark substructure and extra dimensions
- There has been no experimental evidence of quark compositeness so far
- LHC will explore physics at an unprecedented energy scale with collision energies approximately 7 times that of the Tevatron
- The existence of a quark substructure would appear as:
 - an excess of the high P⊤jets compared to the QCD predictions
 - dijet angular distributions more isotropic than that expected from a point-like quark theory

Quark substructure searches

 There is a hypothesis that quarks are bound states of preons and that preons interact by means of a new strong interaction - metacolor

- Compositeness Scale:
 - Λ = ∞ -> point like quarks
 - Λ=finite -> substructure at mass scale of Λ

 $d\sigma$ ~ [QCD + Interference + Compositeness]

$$\chi_s^2(\mu^2) \frac{1}{t^2}$$

$$\alpha_s^2(\mu^2)\frac{1}{t^2}$$
 $\alpha_s(\mu^2)\frac{1}{t}\frac{\mu^2}{\Lambda^2}$

$$\left(\frac{u}{\Lambda^2}\right)^2$$

Methodology

It is convenient to plot the angular distribution as a function of the variable χ , defined below, since the QCD predictions are relatively flat in this variable

$$\chi = \frac{1 + \cos \theta}{1 - \cos \theta} = e^{2|y^{star}|}$$

1/14/09 JTERM 2009 5

DØ results

- DiJet angular distribution from the DO experiment was compared to the NLO theory predictions with various choices of compositeness scale.
- The compositeness scale limit was Lambda > 2.5-2.8 TeV (several limits given depending upon the statistical approach used
- No evidence of quark substructure was observed
- More details in DØ Note: http://wwwd0.fnal.gov/Run2Physics/WWW/ results/prelim/QCD/Q11/Q11.pdf

CDF results

In CDF experiment the ratio of $R = \frac{1 \le \chi \le 10}{15 \le \chi \le 25} \, \underset{5000}{\overset{5}{\cancel{5}}}_{5000}$

versus (mass)⁴ was plotted for various values of Λ to the default Monte Carlo

- No evidence of quark substructure was seen
- The compositeness scale limit was $\Lambda > 2.4 \text{ TeV}$
- More details can be found at: http://wwwcdf.fnal.gov/physics/new/ qcd/QCD.html

Dist varying A,600 GeV mass,CDF Run2 Preliminary

Dijet angular studies at CMS

- First preliminary results with the iCSA08 production samples
- We used single Jet PT trigger for 6 different thresholds in 7 different mass bins and scaled the results to correspond to an integrated luminosity of 10pb⁻¹
- Jets were reconstructed using Seedless Infrared Safe Cone with R=0.7 (SisCone7) jet algorithm
- We are currently working on reproducing the results with the newest Summer08 production samples

Acceptance studies

As shown before $x=e^{2y^{star}}$ where $y^{star} = \frac{|y_1 - y_2|}{2}$ and

$$y_{boost} = \frac{|y_1 + y_2|}{2}$$

Limit on \mathcal{Y}_{boost} is set by

$$|y_{boost}| + |y^{star}| < |y_{max}|$$

Two cuts were

investigated:
$$y_{max}=3.0$$
 and $y_{max}=2.0$

$$y_{max} = 2.0$$

Mass bins: data-driven approach

- We only used events where single jet trigger is fully efficient
- Each dijet mass bin only uses data from a single trigger path
- Shape analysis:
 - Observable:

$$\frac{1}{\sigma} \frac{d \sigma}{d \chi}$$

Comparison with GenJets

No resolution unsmearing performed

Uncertainty due to energy scale

Rough first guess for energy scale uncertainty with 10 pb⁻¹ data:

Barrel

- $_{-}$ 10% for p_{$_{\rm T}$} < 100 GeV
- Then linearly increasing to 20% @2TeV

Endcaps

- Barrel uncertainty plus additional 10% to 100 GeV
- Extrapolate to 20% @1 TeV

Forward

- Barrel uncertainty plus additional 15% @100 GeV
- Extrapolate to 30 % @ 500 GeV

Comparisons to theory

- No resolution unsmearing performed
- 5% systematic uncertainty due to energy scale added in quadrature to the statistical error
- LO calculations:
 - Scale: $\mu_R = \mu_F = p_T$
 - Pdf: CTEQ6L
 - Two choices of compossiteness scale shown:
 - Λ=3.0 TeV
 - ∧=5.0TeV

Summary

- Dijet angular distribution probes the hard scatter of QCD dynamics and signatures of new physics
- First look of dijet angular distributions @ 10 TeV was done with the iCSA08 MC sample
- Currently we are working on refining the analysis with the Summer08 samples, studying correlation of systematic uncertainties and developing the methodology to extract the compositness limits