WG2: Precision electroweak, Status and Plans

A. Freitas (University of Pittsburgh), S. Heinemeyer (CSIC-UC Santander)

10th FCC-ee Physics Workshop 4–5 February 2016

Main topics:

- 1. SM theory predictions for EWPOs
- 2. Theory input to fundamental parameter determination
- **3.** Implications for BSM physics from EWPOs
- **4.** Theory and parametric uncertainties for Higgs physics

Error estimations:

	LEP/SLC	ILC	FCC-ee	current theory error	theory error with 3-loop [†]
M_{W} [MeV]	15	3–5	~ 1	4	1
Γ_Z [MeV]	2.3	~ 1	~ 0.1	0.5	$\lesssim 0.2$
$R_b [10^{-5}]$	66	15	\lesssim 5	15	5–10
$\sin^2 \theta_{\rm eff}^{\ell}$ [10 ⁻⁵]	16	1.3	0.6	4.5	1.5

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_{s}^{2})$, $\mathcal{O}(N_{f} \alpha^{2} \alpha_{s})$, $\mathcal{O}(N_{f}^{2} \alpha^{2} \alpha_{s})$ $(N_{f}^{n} = \text{at least } n \text{ closed fermion loops})$ $\mathcal{O}(\alpha_{t} \alpha_{s}^{3})$, $\mathcal{O}(\alpha_{t}^{2} \alpha_{s}^{2})$, $\mathcal{O}(\alpha_{t}^{3} \alpha_{s})$, $\mathcal{O}(\alpha_{t}^{4})$ $(\alpha_{t} = \alpha \frac{m_{t}^{2}}{M_{w}^{2}})$

Work in progress/plans:

- Determine what is needed (3-loop + leading 4-loop/5-loop?)
- Agree on method(s) for theory error evaluation
- Connection to low-energy prec. measurements and high-energy RGE evol.?

SM input parameters

- m_t : from $e^+e^- \rightarrow t\bar{t}$, several sources of theory error \rightarrow Projected theory error: $\delta_{th}m_t \sim 50 \text{ MeV}$
- M_W : from $e^+e^- \rightarrow W^{(*)}W^{(*)}$, $\delta_{exp}M_W \sim 1$ MeV Current theory error: $\delta_{th}M_W \sim 3$ MeV \rightarrow With 2-loop and resummed higher-order terms for $e^+e^- \rightarrow WW$ and $W \rightarrow ff'$ expect $\delta_{th}M_W \sim 1$ MeV
- α_s : from $R_{\ell} = \Gamma[Z \rightarrow \text{had.}] / \Gamma[Z \rightarrow \ell^+ \ell^-], \quad \delta_{\exp} \alpha_s \sim 0.0001$ \rightarrow Projected Theory error (with 3-loop corrections): $\delta_{\text{th}} \alpha_s \sim 0.0002$
- $\Delta \alpha_{had}$:
 - a) from $e^+e^- \rightarrow$ had. using dispersion relation Improvement to $\delta_{\exp}(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ likely
 - b) at FCC-ee from $e^+e^- \rightarrow \mu^+\mu^-$ off Z peak: $\delta_{exp}(\Delta \alpha_{had}) \sim 3 \times 10^{-5}$ \rightarrow Projected Theory error (with 3-loop corr.): $\delta_{th}(\Delta \alpha_{had}) \sim \text{few} \times 10^{-5}$

SM input parameters

Work in progress/plans:

- Consistent definition of all quantities (e.g. MS/OS scheme)
- Evaluation of theory error sources and possible ways to avoid them
- Determine what is needed and realistic for future loop calculations

- In specific physics models
 - Popular models: 2HDM, MSSM, new vector fermions, ...
 - Flavor-dependent models (new bottom/top partners, ...)
 - Physics unobservable at hadron colliders (superweak couplings, degenerate spectra, ...)

• Model-independent with EFT framework $\mathcal{L} = \mathcal{L}_{SM} \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$

Work in progress/plans:

- More benchmark studies for well-motivated new physics models
- Evaluation of new physics reach including all theory and parametric errors

Higgs physics

Measurable properties of h(125):

- Spin, CP: already underway at LHC
- Mass: direct LHC measurement more precision than SM/MSSM prediction
- **BRs, couplings:** currently O(20%), improvement will greatly enhance sensitivity to higher new-physics scales Englert et al. '14

Target precision of future e^+e^- colliders:

	ILC500	HL-ILC500	FCC-ee
hbb	1%	0.6%	0.4%
htt	2.5%	1.3%	0.7%
h au au	2%	1%	0.5%
hWW	0.4%	0.2%	0.1%
hZZ	0.5%	0.25%	0.05%
$h\gamma\gamma$	8%	4.5%	1.5%
hgg	2%	1%	0.8%

Snowmass Higgs WG '13

	FCC-ee	current th. err.	param. error
hbb	0.4%	< 0.4%	\gtrsim 1% (mainly m_b)
h au au	0.5%	< 0.4%	negligible
hWW	0.1%	0.5%	0.2% (mainly M_{H})
hZZ	0.05%	0.5%	0.2% (mainly M_{H})
$h\gamma\gamma$	1.5%	< 1%	negligible
hgg	0.8%	3%	\lesssim 1% (mainly $lpha_{ m S}$)

Theory uncertainty in Higgs production: $\sim 1\%$

Plans:

- Projection for future δm_b (lattice community)
- Determine what is needed and realistic for future loop calculations
 - $\mathcal{O}(\alpha_s^2)$ corrections to $h \to 4f$
 - full $\mathcal{O}(\alpha_s^3)$, leading $\mathcal{O}(\alpha_s^4)$ for $h \to gg$
 - $\mathcal{O}(\alpha^2)$ for $e^+e^- \to h + X$

Conclusions

Past activites:

Ist FCC-ee mini-workshop on Precision Observables and Radiative Corrections, 13–14 July 2015

- FCC-ee Mini-Workshop "Physics Behind Precision", 2–3 February 2016
- Lots of email communication ...

Next steps:

- Write-up on theory error estimates
- Goal-oriented "work"-shop
- More input on new-physics implications...

Many opportunities to be involved!