S(750) and FCCee

Fitting the $\gamma\gamma$ peak:

1) Widths

2) Models

- 3) Theories
- 4) What next?

Alessandro Strumia talk at the 10th FCC-ee physics workshop CERN, February 5, 2016

Horizon 2020 European Union funding for Research & Innovation

European Research Council

The data

Flatland plus a $\gamma\gamma$ peak around 750 GeV

$\sigma(pp \to \gamma \gamma)$	8 TeV	13 TeV
CMS	$(0.5 \pm 0.6) \text{fb}$	$(6 \pm 3) \text{fb}$
ATLAS	$(0.4 \pm 0.8){ m fb}$	$(10\pm3){ m fb}$

Theorethically clean Experimentally simple

ATLAS prefers large width $\Gamma/M \sim 0.06$. CMS prefers narrow width.

 $\gamma\gamma$ not accompanied by hard extras.

Full energy distribution? Angular distribution? Full events?

Needless to say

Maybe a fluke. Gold does not come to you spontaneously.

The Gold Rush

INSPIRES list Date papers 16 Dec 10 19 Dec 46 25 Dec 101 1 Jan 137 1 Feb 212 1 Apr ?

All that is gold does not glitter

physics = experiment + i theory

It's time to present a review of the new boson.

A new boson at 750 GeV?

Run 1 compatible with Run 2 if S is produced as gg, $b\overline{b}$, $c\overline{c}$, $s\overline{s}$. The SM background $q\overline{q} \rightarrow \gamma\gamma$ at 750 GeV grows only by 2.3

A more complicated kinematics?

Compatibility between runs 1, 2 improved if S decays from a heavier particle.

Tuning $M_P \approx M_S + M_R$ needed to avoid p_T . S virtuality can fake S width.

Or large $S \to \Pi \Pi$ with $\Pi \to \gamma \gamma$, collimated and seen as a single γ if $M_{\Pi} \ll M_S$.

Or many collimated γ . Or not a peak. Or two nearby narrow resonances.

Widths

M and Γ from data

Apology: public ATLAS data only

Cross section

It can be computed in terms of (narrow) widths:

$$\sigma(pp \to S \to \gamma\gamma) = \frac{2J_S + 1}{M\Gamma s} \left[\sum_{\wp} C_{\wp\bar{\wp}} \Gamma(S \to \wp\bar{\wp}) \right] \Gamma(S \to \gamma\gamma)$$

Parton \wp luminiosities:

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|}\hline \sqrt{s} & C_{b\bar{b}} & C_{c\bar{c}} & C_{s\bar{s}} & C_{d\bar{d}} & C_{u\bar{u}} & C_{gg} & C_{\gamma\gamma} \\\hline 8\,\text{TeV} & 1.07 & 2.7 & 7.2 & 89 & 158 & 174 & 54 \\\hline 13\,\text{TeV} & 15.3 & 36 & 83 & 627 & 1054 & 2137 & 11 \\\hline \end{array}$$

(Partonic $\gamma\gamma \rightarrow S \rightarrow \gamma\gamma$ would be minimal but run1/run2 compatibility is poor).

Extreme cases: gg and bb

 $S \leftrightarrow \gamma \gamma, gg, ?$

 $S \leftrightarrow \gamma \gamma, b\overline{b}$

Bounds on other decay modes

final	σ at $\sqrt{s} = 8 \mathrm{TeV}$		implied bound on	
state f	observed	expected	$\Gamma(S \to f) / \Gamma(S \to \gamma \gamma)_{\text{obs}}$	
$\gamma\gamma$	< 1.5 fb	< 1.1 fb	$< 0.8 \ (r/5)$	
$e^+e^-, \mu^+\mu^-$	< 1.2 fb	< 1.2 fb	$< 0.6 \ (r/5)$	
$\tau^+\tau^-$	< 12 fb	< 15 fb	$< 6 \ (r/5)$	
$Z\gamma$	< 11 fb	< 12 fb	$< 6 \ (r/5)$	
ZZ	< 12 fb	< 20 fb	$< 6 \ (r/5)$	
Zh	< 19 fb	< 28 fb	< 10 (r/5)	
hh	< 39 fb	< 42 fb	< 20 (r/5)	
W^+W^-	< 40 fb	< 70 fb	< 20 (r/5)	
$t\overline{t}$	< 450 fb	< 600 fb	< 300 (r/5)	
invisible	< 0.8 pb	-	< 400 $(r/5)$	
$b\overline{b}$	\lesssim 1 pb	\lesssim 1 pb	$< 500 \; (r/5)$	
jj	\lesssim 2.5 pb	-	< 1300 $(r/5)$	

Here $r = \sigma_{13 \text{ TeV}} / \sigma_{8 \text{ TeV}}$. Using run 2 data only would be safer. Run 2 *jj*? Even invisible modes are constrained

Global fits

Regions that fit the rate, the width $\Gamma/M \sim 0.06$ and that satisfy all bounds:

 $S \leftrightarrow gg, \gamma\gamma, X$

 $S \leftrightarrow \wp \wp, \gamma \gamma$, invisible

 $\Gamma(S
ightarrow \gamma \gamma)/M \gtrsim$ few $imes 10^{-5}$ needed: it's big!

Spin 2?

 $S_{\mu\nu}$ coupled to the various components $T^{(p)}_{\mu\nu}$ of the energy-momentum tensor:

$$\mathscr{L}_{\mathsf{eff}} = S^{\mu\nu} \sum_{p = \{\gamma, g, \ell, \dots\}} \frac{T^{(p)}_{\mu\nu}}{\Lambda_p}$$

The width into photons can be large. Angular distributions: not flat.

Randall-Sundrum graviton disfavored: it predicts a common Λ such that

$$\sigma(pp \to e^+e^- + \mu^+\mu^-) = \sigma(pp \to \gamma\gamma)$$

But no peaks seen in leptons, $\sigma(pp \rightarrow \ell^+ \ell^-) < 5 \text{ fb} (ATLAS)$ and $\leq 3 \text{ fb} (CMS)$.

Spin 0: $SU(2)_L$ singlet or doublet?

S as a doublet: coupling to $\gamma\gamma$ and gg suppressed by $v/M \sim 0.2$. S as a singlet: coupling to SM fermions suppressed by $v/M \sim 0.2$:

$$\mathscr{L}_{\text{eff}} = S \left[g_3^2 \frac{G_{\mu\nu}^2}{2\Lambda_g} + g_2^2 \frac{W_{\mu\nu}^2}{2\Lambda_W} + g_1^2 \frac{B_{\mu\nu}^2}{2\Lambda_B} + \left(\frac{H\bar{\psi}_L\psi_R}{\Lambda_\psi} + \text{h.c.} \right) + \frac{|D_\mu H|^2}{\Lambda_H} \right]$$

SU(2)-invariance implies $S \rightarrow Z\gamma, ZZ, WW$ nearby

Future

Measuring the EW widths will over-constrain the operators

and maybe discover coupling to \boldsymbol{h}

Models

Volksmodell (the everybody's model)

SM loop excluded: the tree level decay would be too large e.g.

 $rac{\Gamma_{tar{t}}}{\Gamma_{\gamma\gamma}}pprox 10^5.$

More particles needed

The Sgg and $S\gamma\gamma$ operators can be generated if S couples to charged particles $S\bar{Q}_f(y_f + iy_{5f}\gamma_5)Q_f + SA_s\tilde{Q}_s^*\tilde{Q}_s$

At one loop

$$\frac{\Gamma(S \to gg)}{M} \approx 7.2 \times 10^{-5} \left| \sum_{f} I_{r_f} y_f \frac{M}{2M_f} + \sum_{s} I_{r_s} \frac{A_s M}{16M_s^2} \right|^2,$$

$$\frac{\Gamma(S \to \gamma\gamma)}{M} \approx 5.4 \times 10^{-8} \left| \sum_{f} d_{r_f} Q_f^2 y_f \frac{M}{2M_f} + \sum_{s} d_{r_s} Q_s^2 \frac{A_s M}{16M_s^2} \right|^2,$$

- Such loop processes cannot make $\Gamma/M \sim 0.06$. The large width is typical of a $1 \rightarrow 2$ tree level decay with coupling $y \sim 1$.
- If Γ is small, data want $\Gamma(S \to \gamma \gamma) \gtrsim 10^{-6} M$, which can be done. E.g. a H', with S and P splitted by $\Delta M = \lambda v^2/M = \lambda \times 40$ GeV (< 6 GeV in MSSM)

• If Γ is large, data want $\Gamma(S \to \gamma \gamma) \gtrsim 10^{-4} M$, which seems too large?

Good particles in the loop: L, E, U

Large width \Rightarrow non-perturbativity

Enhance $\Gamma(S \rightarrow \gamma \gamma)$ with: a) many states; b) big Yukawa y; c) big charge. In any case: nearby Landau poles for g_3 or e or y:

Much larger y and $\Gamma_{\gamma\gamma}$ if gauged SU(N) with IR fixed point. Then $pp \to SS$.

Similar results with extra scalars

A large cubic does not give Landau poles, but it is limited by vacuum decay.

 $\Gamma(S \rightarrow \gamma \gamma)$ from a scalar loop, $M_X = 375$ GeV

 $\Gamma(S \rightarrow \gamma \gamma)$ from a scalar loop, $M_X = 1$ TeV

 $\Gamma_{\gamma\gamma}$ can be much larger if gauged SU(N) with IR fixed point

Extra Q = Dark Matter?

1) The connection with Ω_{DM} is interesting on its own;

2) as a way to hide many particles, if they are needed to enhance $S \rightarrow \gamma \gamma$;

3) as a way to get tree level $S \rightarrow \text{DM} \text{DM}$ decays, if $\Gamma/M \sim 0.06$ is true.

Direct detection bounds are (weak) irrelevant if S is a scalar (pseudo-scalar).

$\Gamma/M \sim 0.06$ is typical of QCD resonances

Composite neutral bosons of QCD

Strongly coupled models

Large width natural. Main options:

SU(2)_L broken by strong dynamics aka technicolor. Bonus/malus:

- + Simple UV-complete fundamental theories. E.g. extra fermions Q chiral under SU(2)_L and charged under extra SU(N) strong at v.
- Dead. RIP.

Composite H and S. Bonus/malus:

- Flavor problems avoided imagining partial compositeness \mathscr{L}_{eff} , no theory.
- + Allows large width trough $S \rightarrow t\bar{t}$.
- + 750 GeV compatible with usual (fine-tuned) naturalness.

Composite S, elementary H and SM. Bonus/malus:

- + No flavor problems, simple UV-complete fundamental theories. E.g. extra vectorlike particles Q charged under SM and under extra strong SU(N).
- + Dark Matter could be a G-stable TC π . Large width as $S \rightarrow \text{DMDM}$?
- + 750 GeV ok with modified naturalness, dynamical generation of v.

 \boldsymbol{S} could be:

- 1) a pseudo-scalar $TC\eta$ with anomalous coupling to vectors enhanced by N;
- 2) a scalar, maybe a dirty TC-dilaton;
- 3) a TC-charmonium.

Theories

The Big Picture

Too early. If narrow, everybody who has a singlet can postdict.

E.g. S could be some SUSY singlet (H, A, $\tilde{\nu}$, NMSSM, sgoldstinos...).

Trinification $SU(3)_L \otimes SU(3)_R \otimes SU(3)_c$ predicts extra $L, D \ (\subset 27 \text{ of } E_6)$ and can fit diphoton + diboson $(g_R \approx 0.444)$. String models often have extra states. Homer Simpson predicted M = 774 GeV in 1998

 $M(H^{\circ}) = \pi \left(\frac{1}{137}\right)^{8} \sqrt{\frac{hc}{G}}$ 3987¹² + 4365¹² = 4472¹² Ω(t.) > |

What next?

LHC

Sgg gives more jets than $Sq\bar{q}$. Measure the transverse momentum of S:

$$\frac{\sigma(20\,\text{GeV} < p_T^S < 40\,\text{GeV})}{\sigma(p_T^S < 20\,\text{GeV})} = \begin{cases} 1.4 & gg\\ 0.6 & q\bar{q}\\ \sim 1.1 & b\bar{b} \end{cases}$$

 $Sb\overline{b}$ gives extra *b* jets [arXiv:1512.08478].

Scalar/pseudoscalar can be discriminated by

- 1) observing $S \rightarrow hh$,
- 2) studying $S \rightarrow ZZ \rightarrow 4\ell$,
- 3) studying Sjj.

 $pp \rightarrow SS$ if big coupligs. [...]

Implications for FCCee

1) WOW

2) New physics at 750 GeV! Is FCCee dis-f**ed?

3) Maybe at $\leq \frac{1}{2}$ 750 GeV to give invisible S decays + loop width into $\gamma\gamma$?

LHC can miss DM multiplets, especially if quasi degenerate (soft tag). Then: A) High-energy tails of $pp \rightarrow \ell^- \ell^+$, sensitive to Δb (BSM running of g_Y, g_2). B) e^+e^- collider: even if Q is too heavy, it could be probed indirectly

Universal new physics

Heavy new physics that affects the SM vector propagators is condensed in:

S,T: affected by new particles coupled to H, FCC sensitivity already studied W,Y: affected by any new particle with gauge interactions

 $W\!,Y\geq 0$ are cumulative and related to RGE coefficients by

$$Y = \frac{\alpha_Y}{20\pi} \left[\sum_s \frac{\Delta b_Y^{(s)}}{2} \frac{M_W^2}{M_s^2} + \sum_f \Delta b_Y^{(f)} \frac{M_W^2}{M_f^2} \right] = 1.1 \ 10^{-5} \left[\frac{\Delta b_Y^{(s)}}{2} + \Delta b_Y^{(f)} \right] (\frac{300 \text{ GeV}}{M})^2$$

and the same for $Y \rightarrow W$. For example heavy SUSY particles give:

$$Y = \frac{\alpha_Y}{40\pi} M_W^2 \left(\frac{1}{m_{\tilde{E}}^2} + \frac{1}{2m_{\tilde{L}}^2} + \frac{1}{3m_{\tilde{D}}^2} + \frac{4}{3m_{\tilde{U}}^2} + \frac{1}{6m_{\tilde{Q}}^2} + \frac{1}{6m_{\tilde{A}}^2} \right) + \frac{\alpha_Y}{30\pi} \frac{M_W^2}{\mu^2} > 0$$
$$W = \frac{\alpha_2}{80\pi} M_W^2 \left(\frac{1}{m_{\tilde{L}}^2} + \frac{3}{m_{\tilde{Q}}^2} + \frac{1}{3m_{\tilde{A}}^2} \right) + \frac{\alpha_2}{30\pi} \left(\frac{M_W^2}{\mu^2} + \frac{2M_W^2}{M_2^2} \right) > 0$$

FCC sensitivity to W, Y

Mostly trough the weak angle from Z couplings, $g_V/g_A \equiv 1 - 4 \sin^2 \theta_W$: $\delta \sin^2 \theta_W = -0.33Y - 0.09W = \pm 10^{-6}|_{exp} \pm 1.8 \ 10^{-5}|_{\alpha_{em}}$ The present α_{em} error might be irreducible. At least Y to $\pm \text{few} \times 10^{-5}$. Band becomes a long ellipse assuming standard estimates for other observables. $W < 0.6 \ 10^{-4}$ means $m_{\tilde{L}} > 120 \text{ GeV}, \ \mu > 200 \text{ GeV}, \ M_2 > 270 \text{ GeV}.$

LEP1 + LEP2

LEP2 measured W, Y as well as LEP1. Indeed their effects grow with energy. At $s \gg M_{\rm W}^2$

$$\begin{array}{c|c} & \text{obs/obs}_{\text{SM}} - 1 \\ \hline \sigma(e^+e^- \to \mu^+\mu^-) & -(0.67W + 1.33Y)s/M_W^2 \\ \sigma(e^+e^- \to q\bar{q}) & -(1.35W + 0.65Y)s/M_W^2 \\ A_{\text{FB}}^\mu & -0.40(W + Y)s/M_W^2 \end{array}$$

Can FCCee do the same? Expected accuracy:

$\sqrt{s}/\operatorname{GeV}$	160	240	350
$\sigma(e^+e^- \rightarrow \mu^+\mu^-)$	0.015%	0.025%	0.075%
W,Y	$0.4 \ 10^{-4}$	$0.3 10^{-4}$	$0.4 10^{-4}$

Conclusions

We will know much more, soon.