
Experimental Studies: Status and Goals

Reminder: Groups, conveners, meetings, ...

- Physics studies: A. Blondel, P. Janot (Exp); J. Ellis, C. Grojean (Th)
 - Study the properties of the Higgs and other particles with unprecedented precision

EW Physics (Z pole)

R. Tenchini, F. Piccinini S. Heinmeyer, A. Freitas

Diboson physics, m_w

R. Tenchini, F. Piccinini S. Heinmeyer, A. Freitas

Higgs Properties

M. Klute, K. Peters S. Heinmeyer, A. Freitas

Top Quark Physics

P. Azzi, F. Blekman S. Heinmeyer, A. Freitas

QCD and $\gamma\gamma$ Physics

D. d'Enterria P.Skands

Flavour Physics

S. Monteil
J. Kamenik

New Physics

M. Pierini, C. Rogan M. McCullough

Develop the necessary tools

Offline Software

C. Bernet, B. Hegner
C. Helsens

Understand the experimental conditions

Online

C. Leonidopoulos, E. Perez

N. Bacchetta, M. Boscolo

Set constraints on the possible detector designs to match statistical precision

Detector Designs

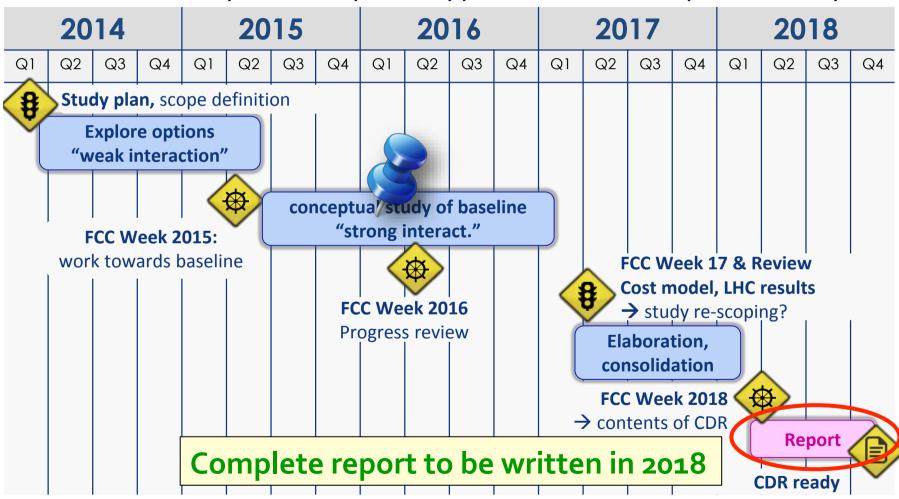
A. Cattai, M. Dam, G. Rolandi

Reminder: Groups, conveners, meetings, ...

Meetings

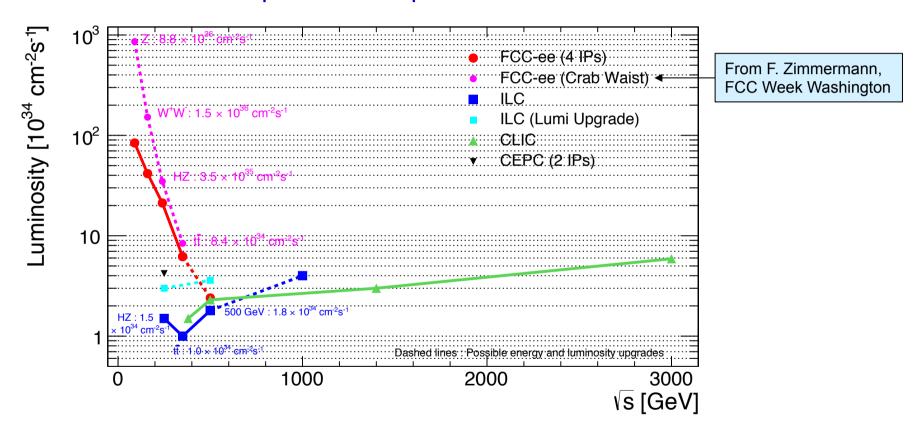
- Physics coordination meetings: https://indico.cern.ch/category/5692/
 - Monthly, every 2nd Thursday, 10:30am discuss plans, organization, news, ...
- Physics vidyo meetings: https://indico.cern.ch/category/5307/
 - Monthly, every last Monday, 3pm discuss interesting topics, recent work, ...
- Physics group meetings: https://indico.cern.ch/category/5259/
 - Organized by the group conveners on demand
- Physics workshops: https://indico.cern.ch/category/5684/
 - Five mini-workshops since June, organized by convener subsets
 - Detector requirements
 - **→** Theoretical predictions and precision
 - **→** Higgs physics
 - $\rightarrow \alpha_{\rm S}$ from LHC to FCC-ee
 - Physics behind precision
 - Yearly general physics workshops
 - ➡ In Pisa (Feb. 2015)
 - **→** At CERN (Feb. 2016)

Some have led to written documents e.g., arXiv:1512:05194 for $\alpha_{\rm S}$: 145 pp


Reminder: Groups, conveners, meetings, ...

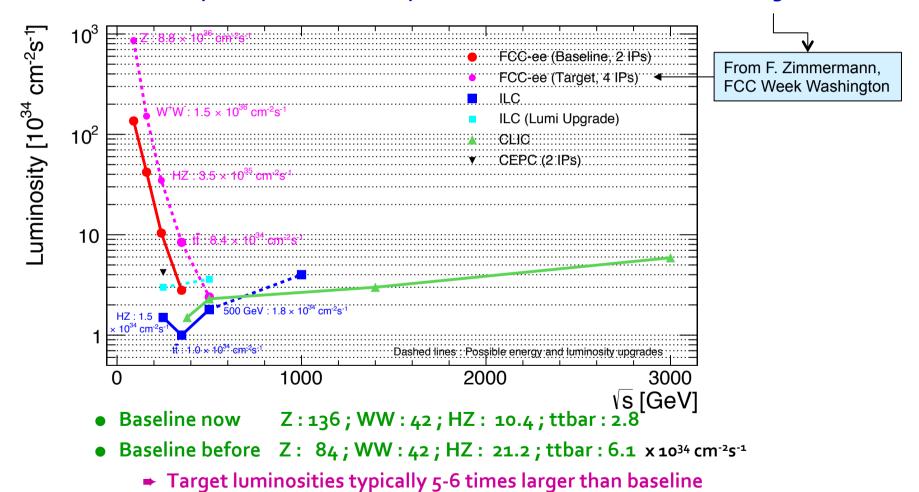
Outcome

- Each group will present the outcome of this year during this 2-day workshop
 - As well as their plans for the year(s) to come
- Highlights
 - Physics software getting operational (needs users!)
 - Unique flavour physics potential
 - Evaluation of theoretical efforts needed to match exp'tal precision
 - α_s document
 - No pressing need of longitudinal polarization (top EW couplings, $\sin^2\theta_W$, m_W , ...)
 - Higgs width better than with a muon collider
 - $\alpha_{QED}(m_Z)$ direct measurement
 - Run plan
 - Many presentations at international conferences
 - Several publications
 - ...
- Quite a productive year, in spite of the limited team, time, or political support


FCC Design Study Time Line

- Our physics studies are part of the FCC design study
 - ◆ We are half way of the conceptual study period "Conclusion" expected within a year

Baseline Luminosity


- Until now, we were using this celebrated plot
 - Without a realistic optics to back it up

Baseline before Z: 84; WW: 42; HZ: 21.2; ttbar: 6.1 x 10³⁴ cm⁻²s⁻¹

Baseline Luminosity

- We have now coherent and sound optics for the first time!
 - Conservative parameters (see backup slides) but sound base towards the target

Run plan (in preparation)

- We are preparing a written document for the FCC-ee run plan
 - With the target luminosities and 4 IPs, the run plan is as follows
 - Number of events expected per year of running

√s (GeV)	90 (Z)	160 (WW)	240 (Higgs)	350 (tt)	365 top EW couplings
Lumi (ab-1/yr)	86.0	15.2	3.5	1.0	1.0
Events/year	3.7×10 ¹²	6.1×10 ⁷	7.0×10 ⁵	4.2×10 ⁵	2×10 ⁶

 Number of years needed to finish the program 					1 year = 10 ⁷ s
# years	2.5	1	3	0.5	3

- The FCC-ee core programme can be finished in about 10 years
 - \rightarrow m₇ to 100 keV, α_{OFD} to 3×10⁻⁵, α_{S} to 0.0001, $\sin^{2}\theta_{W}$ to 6×10⁻⁴
 - → m_w to 0.5 MeV
 - ➡ Higgs couplings/width to sub per cent, top EW couplings to per cent

→ ...

- ◆ These precisions (i.e., these luminosities) are needed for the new physics sensitivity
 - The conservative baseline parameters are a first giant step on this way.

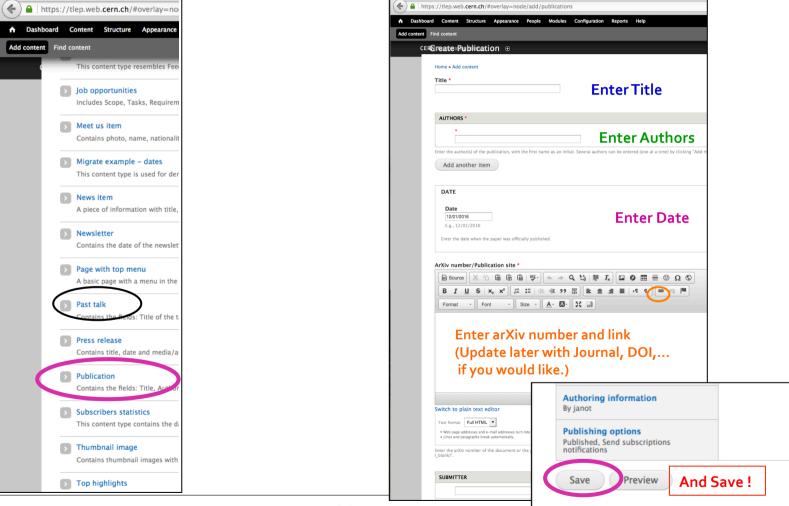
- Increase the effort wherever needed, with a team of new fellows/students
 - Machine-Detector interface (MDI)
 - Brand new task force created (see afternoon session)
 - → Applied fellows being recruited

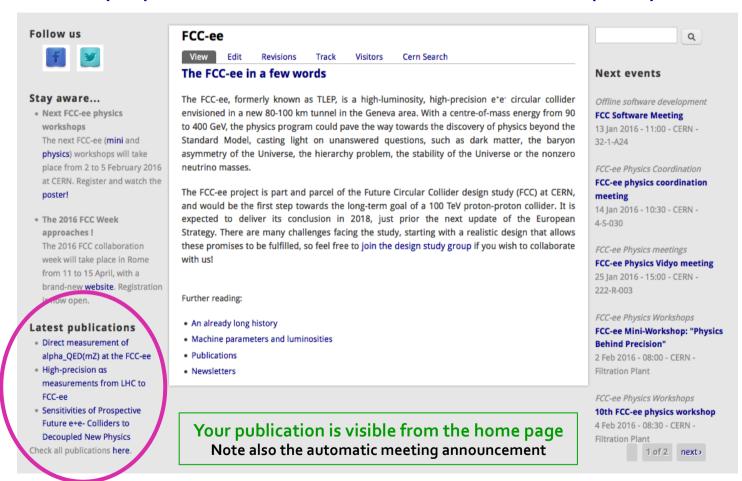

Anna Kolano (01/03/16): Understanding/simulation of beam backgrounds NN (09/16?): Detector integration in the IR, luminosity measurement ...

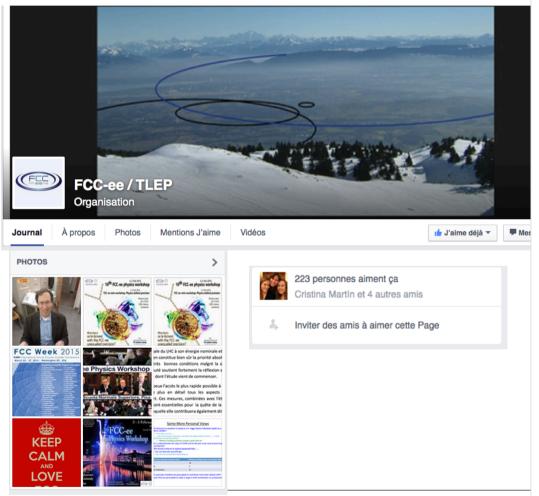
- Synergy with CLIC detector group
 - Adapt CLIC detector concept to FCC-ee (see first ideas tomorrow)
 - ➡ High granularity calorimetry, Si Tracker, ... etc
 - Doctoral student project being prepared (09/16?)
 - → Also synergy with CMS calorimeter upgrade
 - Import geometry / simulation / reconstruction / generators in the FCC software
 - Great synergy with CLIC group (participation to FCC-ee physics much welcome!)
 - Applied fellow project being prepared (09/16?)
- FCC physics software: USE IT!
 - Reproduce (full simulation) analysis in the FCC software, and complete if needed
 - ➤ E.g., b-tagging, event display, generators, beam backgrounds, ...
 - Applied fellow project being prepared


- Detector and physics studies are an endless source of inspiration
 - We have only started to scratch the surface, with (smart) guesswork
 - Each specific study leads to interesting/unexpected conclusions
 - ➡ Because the FCC-ee luminosities are nothing like anything before
 - This guesswork needs to be extended, and consolidated by more in-depth studies
 - Use of FCC physics software, realistic detectors, ...
 - We need to involve young physicists in our studies
 - **→** At CERN (research fellows) and outside institutes (students)
 - Be it for only a fraction of their time
 - ◆ Our mission: transfer our e⁺e⁻ knowledge and form a new generation of physicists
 - They are going to run and exploit this collider!
 - They are actually going to continue these studies in the next decade
- Of special importance: precision of theoretical calculations
 - We repeatedly saw in the past two days the crying needs for higher-order calculations
 - Their current lack is often the only obstacle towards new physics interpretation
 - → (Beside building the collider of course, and providing the target luminosities)
 - We need to set up an international effort in this direction, to last several decades

- Give presentations to conferences, and document them!
 - Example: ICHEP 2016, 3-10 Aug, proposed abstracts
 - Mass measurements at FCC-ee
 - Asymmetry measurements at FCC-ee: is longitudinal polarization needed?
 - Higgs measurements at the FCC-ee, complementarity with FCC-hh
 - Top-quark physics at FCC-ee, complementarity with FCC-hh
 - New physics with FCC-ee: Impact on precision measurement and direct searches
 - QCD studies at FCC-ee
 - Flavour studies at FCC-ee
 - Physics at FCC-ee and run plan
 - MDI at FCC-ee
 - Everybody is very much welcome to give any of these talks, at any conference
 - Volunteer! Be proactive! Support the FCC-ee by showing its physics case!
 - It is then important to upload your slides, your proceedings, your publications, ...
 - On the FCC-ee web site


- Communication: We have a beautiful web site (https://cern.ch/fcc-ee)
 - It certainly depends on the contribution of each and all of us: upload your studies!


- Communication: We have a beautiful web site (https://cern.ch/fcc-ee)
 - It certainly depends on the contribution of each and all of us: upload your studies!


- Communication: We have a beautiful web site (https://cern.ch/fcc-ee)
 - It certainly depends on the contribution of each and all of us: upload your studies!

- Communication: We have a beautiful web site (https://cern.ch/fcc-ee)
 - It certainly depends on the contribution of each and all of us: upload your studies!

- □ Communication: we also have a fb page https://www.facebook.com/tlepdesignstudy
 - ◆ You can contribute to it by sending us news, anecdotes, etc...

28 Jan 2016: First piece of hardware for the FCC-ee
A prototype for the final focussing quadrupole of the FCC-ee was
3D-printed over Xmas, for tests and measurements. Congratulations to
Mike Koratzinos and magnet group for this achievement.

Voir la traduction

Forthcoming FCC week

- FCC week in Rome (11-15 April 2016)
 - Prel. agenda: http://fccw2016.web.cern.ch/fccw2016/FCCWeek2016Agenda_v2.pdf
 - Register at http://fccw2016.web.cern.ch/fccw2016/
 - Hotel room booking urgent!
 - ◆ Send abstracts (by 7 Feb) [with cc: to Alain and myself] about
 - Theory
 - Experimental studies
 - MDI
 - Detectors
 - Software
 - Posters

PS: Poster contest

Still a few hours to send your interpretation of the poster illustration

Winner(s) will be announced tomorrow

Backup slides

parameter	FCC-ee crab waist (2 IPs)			
	Z	W	Н	t
E _{beam} [GeV]	45.5	80	120	175
current [mA]	1450	152	30	6.6
P _{SR,tot} [MW]	100	100	100	100
no. bunches	90300	5162	770	78
N_b [10 ¹¹]	0.33	0.6	8.0	1.7
ε_{x} [nm]	0.09	0.27	0.61	1.3
ε_{y} [pm]	1.0	1.0	1.2	2.5
$\beta_{x}^{*}[m]$	1	1	1	1
β* _y [mm]	2	2	2	2
$\sigma_{y}^{*}[nm]$	45	45	51	72
$\sigma_{x}^{*}[\mu m]$	9.5	16	25	36

FCC-ee baseline parameters (1)

parameter	FCC-ee crab waist (2 IPs)			
	Z	W	Н	t
RF frequency [MHz]	400	400	400	400
RF voltage [GV]	80.0	8.0	3.0	10
energy loss / turn [GeV]	0.03	0.33	1.67	7.55
circumference [km]	100	100	100	100
momentum compaction [10 ⁻⁵]	0.7	0.7	0.7	0.7
synchrotron tune	0.015	0.037	0.056	0.075
$\sigma_{z,SR}$ [mm]	2.70	1.98	2.0	2.1
$\sigma_{z,tot}$ [mm] (w beamstr.)	4.97	3.04	2.4	2.5
σ _{δ,SR} [%]	0.037	0.065	0.10	0.14
$\sigma_{\delta, \text{tot}}$ [%] (w beamstr.)	0.068	0.10	0.12	0.17
hourglass factor F_{hg}	0.98	0.95	0.91	0.88

FCC-ee baseline parameters (2)

parameter	FCC-ee crab waist (2 IPs)			
	Z	W	Н	t
beam-beam par. ξ_y /IP (2 IPs)	0.05,0.13	0.07,0.16	0.08, 0.14	0.08, 0.12
τ_{beam} [min] (2 IPs) [θ =1.6%]	>10000	>10000	>10000	4600
τ _{Bhabha} [min] (2 IPs)	247	109	78	63
L/IP [10 ³⁴ cm ⁻² s ⁻¹] (2 IPs)	68	19	4.9	1.3
L/IP [10 ³⁴ cm ⁻² s ⁻¹] (2 IPs) (Dmitry Shatilov)	68	21	5.2	1.4

comments: beamstrahlung lifetime not critical; at 45.5 and 80 GeV more luminosity with smaller β_y^* ; dynamic beta and dynamic emittance not taken into account

FCC-ee baseline parameters (3)