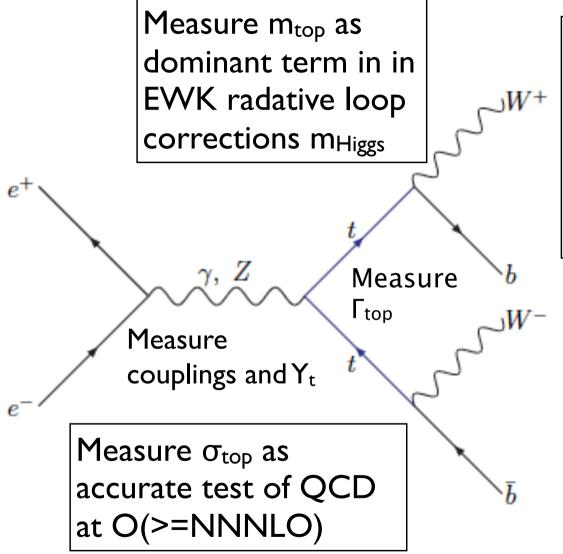
Working Group 4 TopPhysics@FCC-ee

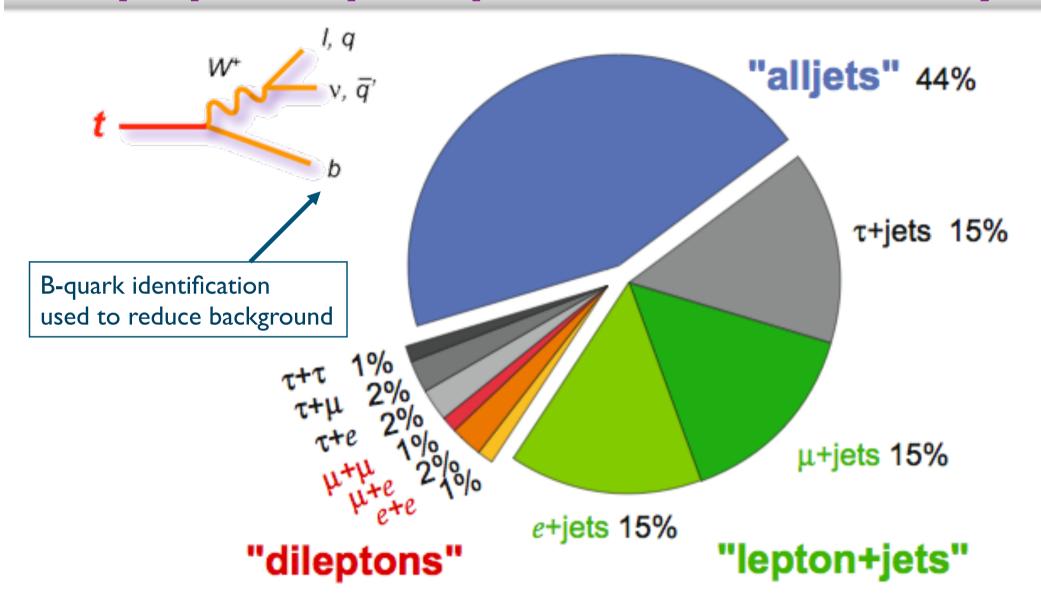
Patrizia Azzi - INFN Padova Freya Blekman - Vrije Universiteit Brussel

Top Physics at FCC-ee

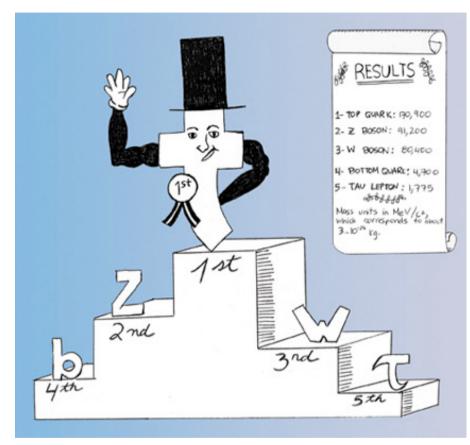

- The strength of the FCC-ee program is to be able to span several centre of mass energies: from Tera-Z to 350GeV and maybe up to a 500 GeV option.
- Where/when does top physics come in the program?
 - @350 GeV: cross section ttbar: 0.5 pb
 - dedicated run at/around 2m_{top} 'Mega-Top'
 - $2 \text{ ab}^{-1} = IM \text{ top pairs}$
 - with 4 IP: 0.5 year/IP D'Enterra arxiv: 1601.06640
 - Single top quark sample: by product of 240 GeV run at HZ
 - Higher energy runs?: ttH becomes accessible @500 GeV

The case of the top quark

Check top quarks decay properties:
FCNC and anomalous couplings can strongly probe/exclude many BSM scenarios


Spin of W boson is direct probe of top spin and the only way to measure spin correlations in unbound quarks

Top quark pair production & decay



FCC-ee 'dream' top physics program

- High priority topics that need attention in the coming year
 - studies obvious potential as clearly important
 - or: further studies would improve assessment real potential
- We have a to-do list (with open topics!)
 - Plan to update but already much information available on top physics group page:

https://tlep.web.cern.ch/content/wg4-exp

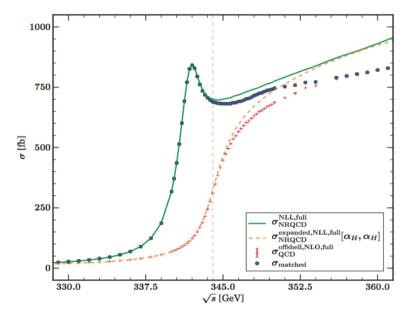
In the mass competition the top quark remains the winner even after the Higgs discovery :)

top physics wish list

- FCC-ee at 2m_{top} 350 GeV:
- top mass measurement around threshold @350GeV
- intertwined with mass but dedicated measurement could improve sensitivity:
 - top Y_t measurement
 - top width
- Rare decays
- FCNC
- Anomalous couplings
- Forward-backward asymmetry

- Single top physics @240GeV:
 - higher integrated luminosity will really help here
 - direct measurement V_{tb}
 - Anomalous couplings FCNC
 - also @240 GeV
- Interference ttbar/WbWb and single top production is open topic
 - needs further exploration and interaction with pheno group
- The case for 500 GeV run
 - direct extraction of Yt from ttH
 - any other BSM signal to look for?

Threshold scan - Ultimate sensitivity


Top threshold matching in the WHIZARD code (J.Reuter et al, '16)

Monte Carlo implementation of $e^+e^- \to t\bar t$ at and above threshold at NLO

At threshold: TOPPIK code, with the $t \bar t \gamma$ and $t \bar t Z$ vertices given by NR form factors

Beyond threshold: relativistic NLO QCD factorizing top production and decay

Matching: add NLL and NLO and subtract $\mathcal{O}(\alpha_S)$ from expanded NLL

See talk by Gennaro Corcella

12

Results since last workshop

- FCNC in hadronic channel
- top (anomalous) couplings to Z and Y
- Composite Higgs from top couplings

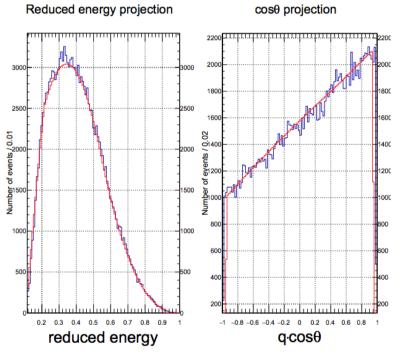
hadronic top twice as sensitive to $BR(top)^{FCNC}$ as leptonic top

(leptonic channel)	$(100 \ fb^{-1})$	(hadronic)
$\sqrt{s} \; (\mathrm{GeV})$	240	
$Br(t o q\gamma)$	5.9×10^{-4}	3.3×10^{-4}
$Br(t \to qZ) \ (\sigma_{\mu\nu})$	8.8×10^{-4}	4.3×10^{-4}
$Br(t \to qZ) \ (\gamma_{\mu})$	1.4×10^{-3}	8.8×10^{-4}

Khanpour at al. 1408.2090

See talk by Barbara Mele

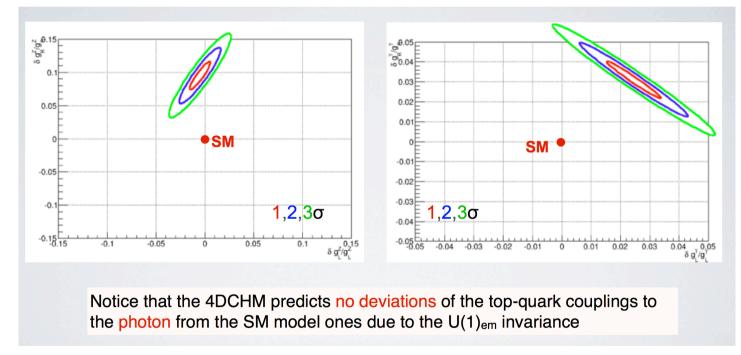
Many more nice results in Fulvio Piccinini talk



Results since last workshop

- FCNC in hadronic channel
- top (anomalous) couplings to Z and Y
- Composite Higgs from top couplings

- SM signal and background distributions are fixed
- BSM correction coefficients δA_Z , δB_Z are the free parameters of the fit
- $|\cos \theta| < 0.96$
- x < 0.9
- Analogous fit for the electrons (see the backup)
- Many nice results and details in Fulvio Piccinini talk



Results since last workshop

- FCNC in hadronic channel
- top (anomalous) couplings to Z and Y
- Composite Higgs from top couplings

Many more nice results in Fulvio Piccinini talk

Top Group plans

- Now that full software is in place, having documented software examples and 'standard' samples will facilitate young people joining this effort
 - many samples can easily be shared
 - will reduce learning curve so increase physics output
 - making plans regarding documentation etc
- Continue constructive collaboration with W and Z groups
- Top quark and BSM intimately intertwined
 - opportunities to gain strength here should be explored
- In the case of top physics, the synergy with ILC community could be explored as the physics case is very similar.
 - Can we strengthen and profit from this?

What next?

- Wish list of studies updated
 - Soon to appear on WG4 twiki
 - Can provide starting points for interested experimentalists
 - Now is time to focus on mass measurement
 - Providing synergy with pheno and theory community
- Many fresh new ideas from FCC-ee Mini-Workshop: "Physics Behind Precision"
 - want to keep momentum and push forward
 - doubled convener team:)

