Electron Yukawa from s-channel Higgs production at FCC-ee

FCC-ee Physics Workshop CERN, 4th–5th Feb. 2016

D. d'Enterria, G. Wojcik* (CERN) R. Aleksan (Saclay)

(*) Now SLAC/Stanford

Resonant s-channel e⁺e⁻ → H production

■ Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H) \approx 70 \text{ pb. Tiny } g_{eH} \text{ Yukawa coupling } \Rightarrow \text{Tiny } \sigma(ee\rightarrow H)$ $\frac{g_{H\mu\mu}}{g_{Hee}} \propto \frac{m_{\mu}^2}{m_e^2} = 4.28 \times 10^4 \qquad \text{BR}(H\rightarrow e^+e^-) \approx 5.3 \cdot 10^{-9} \text{ (decay unobservable)}$ $\sigma(e^+e^-\rightarrow H) = \frac{4\pi\Gamma_H^2Br(H\rightarrow e^+e^-)}{(\hat{s}-M_H^2)^2 + \Gamma_H^2M_H^2} = 1.64 \text{ fb } (m_{H}=125 \text{ GeV}, \Gamma_{H}=4.2 \text{ MeV})$

Huge luminosities available at FCC-ee:

Resonant s-channel e⁺e⁻ → H production

■ Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H) \approx 70 \text{ pb.}$ Tiny g_{eH} Yukawa coupling \Rightarrow Tiny $\sigma(ee\rightarrow H)$ $\frac{g_{H\mu\mu}}{g_{Hee}} \propto \frac{m_{\mu}^2}{m_e^2} = 4.28 \times 10^4$ BR(H→e⁺e⁻) $\approx 5.3 \cdot 10^{-9}$ (decay unobservable) $\sigma(e^+ e^- \rightarrow H) = \frac{4\pi \Gamma_H^2 Br(H \rightarrow e^+ e^-)}{(\hat{s} - M_{eT}^2)^2 + \Gamma_T^2 M_{eT}^2} = 1.64 \text{ fb} (m_H = 125 \text{ GeV}, \Gamma_H = 4.2 \text{ MeV})$

Huge luminosities available at FCC-ee:

In theory, FCC-ee running at H pole-mass $L_{int} \approx 45 \text{ ab}^{-1}/\text{yr}$ would produce O(75.000) H's

Н

IFF we can handle: (i) beam-energy spread, (ii) ISR, and (iii) huge backgrounds, then:

- → Electron Yukawa coupling measurable?
- → Higgs width measurable (threshold scan)?
- → Separation of possible nearly-degen. H's?

$\sigma(e^+e^-\rightarrow H)$ reduction: \sqrt{s} spread

- $\sigma(e^+e^-\rightarrow H) = 1.64$ fb for Breit-Wigner with $\Gamma_{H} = 4.2$ MeV width. Higgs production greatly suppressed off resonant peak.
- Convolution of Gaussian energy spread of each e[±] beam with Higgs B.-W. results on a (Voigtian) effective cross-section decrease:

$\sigma(e^+e^-\rightarrow H)$ reduction: \sqrt{s} spread

- $\sigma(e^+e^- \rightarrow H) = 1.64$ fb for Breit-Wigner with $\Gamma_{H} = 4.2$ MeV width. Higgs production greatly suppressed off resonant peak.
- Convolution of Gaussian energy spread of each e[±] beam with Higgs B.-W. results on a (Voigtian) effective cross-section decrease:

$\sigma(e^+e^-\rightarrow H)$ reduction: \sqrt{s} spread + ISR

Extra ~40% reduction also due to initial state radiation:

Theoretical setup

PYTHIA8 e^+e^- at $\sqrt{s} = m_{H} = 125$ GeV to generate 10 final-states for Higgs signal plus backgrounds ($e^+e^- \rightarrow WW^*$, ZZ*, $\gamma\gamma$, gg, $\tau\tau$, bbar, ccbar, qqbar):

SIGNALS

BACKGROUNDS

(other SM loop-induced $e^+e^- \rightarrow H$ found negligible)

- HDECAY: State-of-the-art Higgs boson decay branching ratios
- YFSWW/ZZ/MG5 calculators cross-check PYTHIA8 x-sections
- FastJet package: Exclusive e⁺e⁻ (2,4) jet algorithm (incl. València algo).
- Event-shape variables: [Webber 2007].
- ISR switched-on in PY8, $\sqrt{s_{spread}}$ via scaling to match $\sigma(e^+e^-\rightarrow H)=290$ ab

FCC-ee Phys. Workshop, CERN, Feb'16

Higgs measurement at FCC-ee(62.5 GeV)

Counting experiment over 10 decay channels:

Decays of a 125 GeV Standard-Model Higgs boson

Other 2-jet final-state (cc) swamped by e⁺e⁻→ Z^{*}, γ^{*} → cc (20 pb)
Other 4-jet final-state (ZZ^{*}) swamped by e⁺e⁻→ Z^{*}, γ^{*} → qq (100 pb), e⁺e⁻→ WW^{*},ZZ^{*} (20 fb)
Rarer decays (4 t) have ~0 counts.

1) bb (2 b-jets): σ = 156 ab Dominant bckgd (ee \rightarrow bb): σ =20 pb (S/B~10⁻⁵) **2) WW* (4j)**: σ = 28 ab Dominant bckgd (ee \rightarrow 4j): σ =16 fb (S/B~10⁻³) **3) WW* (2jlv)**: σ = 27 ab Dom. bckgd (ee \rightarrow WW*): σ =20 fb (S/B~10⁻³) **4) WW* (2l2v)**: σ = 6.7 ab Dom. bckgd (ee \rightarrow WW*): σ =5 fb (S/B~10⁻³) **5) gg (2 jets)**: σ = 24 ab Dom. bckgd (ee \rightarrow "gg"): σ =0.9 pb (S/B~10⁻⁴) **6) ττ (2 τ-jets)**: σ = 7.5 ab Dom. bckgd (ee $\rightarrow \tau\tau$): $\sigma=10 \text{ pb}$ (S/B~10⁻⁷) **7) ZZ* (2j2v)**: σ = 2.3 ab Dom. bckgd (ee \rightarrow ZZ^{*}): σ =213 ab (S/B~10⁻²) **8) ZZ* (2l2j)**: σ = 1.14 ab Dominant bckgd (ee \rightarrow ZZ^{*}): σ =114 ab (S/B~10⁻²) **9) ZZ* (2l2v)**: σ = 0.34 ab Dominant bckgd ($ee \rightarrow \tau \tau$): $\sigma = 10 \text{ pb}$ (S/B~10⁻⁸) **10)** $\gamma \gamma$ (2 isolated γ): $\sigma = 0.65$ ab Dominant bckgd (ee $\rightarrow\gamma\gamma$): σ =36 pb (S/B~10⁻⁸)

Multi-variables, efficiencies & cuts

Single & pair jets, leptons kinematical variables:

 $\begin{array}{l} p_{\text{T,i}}, \eta_{\text{i}}, \phi_{\text{i}}, \text{mass}_{\text{i}}, \text{charge}_{\text{i}}, \Delta R_{\text{isol}} \\ p_{\text{T,max}}, p_{\text{T,min}}, \eta_{\text{max}}, \eta_{\text{min}}, \phi_{\text{max}}, \phi_{\text{min}} \\ m_{\text{inv}}, \cos(\theta_{\text{ij}}), \Delta \eta_{\text{i}}, \Delta \phi_{\text{i}}, H_{\text{T}} \end{array}$

Global event variables:

 E_{tot} , missing energy vector (ME, m_{ME}) Sphericity, aplanarity, thrust min, thrust max,...

Jet/tau reconstruction efficiencies:

b-jet tagging effic. = 70% charm-jet mistag rate = 5% light-q mistag rate = 1.5% c-jet tagging effic. = 80%b-jet mistag rate = 18%light-q mistag rate = 2%e- γ mistag rate = 0.3%

(Isolation: $\Sigma E < 1 \text{ GeV}, \Delta R < 0.25$)

- Kinematics cuts applied to reducible backgrounds.
- MVA BDT applied to (dominant) irreducible continuum.

(All objects reconstructed within $|\eta| < 5$ acceptance)

g-tagging effic. = 60%light-q mistag rate = 5% τ -tagging rate = 80% τ -mistag rate = 0.75%

- ISR events tagged via 2 methods (depending on v's in final state):
 - (1) Cut on the ME vector. ISR photons mostly emitted along beam axis:
 - Large missing energy (ME) but low transverse missing energy (MET).
 - (2) Cut on E_{tot} (computed without isolated ISR photons within $|\eta| < 5$):

Isolated photons with E>5 GeV omitted: $E_{total} > 120 \text{ GeV}$

FCC-ee Phys. Workshop, CERN, Feb'16

Channel 1: $e^+e^- \rightarrow H(bb) \rightarrow 2 b$ -jets

- Final state (retains 90% of σ (bb) = 156 ab): 2 jets (exclusive) + 1 b-jet tagged + 0 τ (had)
- Analysis cuts:
 - Kinematics: None.
 - ✓ BDT MVA applied to reduce dominant $Z^*\gamma^* \rightarrow bbar continuum$

Signal & backgds before/after MVA cuts:

H(bb): $\sigma = 142$ ab $\Rightarrow \sigma$ (after) = 131 ab qqar: $\sigma \approx 20 \text{ pb} \implies \sigma \text{ (after)} = 17 \text{ pb}$ $\tau - \tau$: $\sigma = 607 \text{ ab} \implies \sigma \text{ (after)} = 375 \text{ ab}$

For L_{int}=10 ab⁻¹
S/
$$\sqrt{B}$$
 = 1310/ $\sqrt{1.7e+8} \approx 0.1$
Significance ≈ 0.1

Decays of a 125 GeV Standard-Model Higgs boson charm/anti-charm ZZ VY Z+V others tau/anti-tau_3%

Channel 2: $e^+e^- \rightarrow H(WW^*) \rightarrow Ivjj$

Final state (retains 80% of σ(WW*(lvjj)) = 28 ab):
 1 isolated e,μ,τ(e),τ(μ) + ME>2 GeV + 2 jets (excl.)

Analysis cuts:

✓ $E_{j1,j2}$ < 52,45 GeV ¬ Kills qqbar ✓ $m_{w(lv)}$ > 12 GeV/c²¬ Kills qqbar ✓ E_{lepton} > 10 GeV ¬ Kills qqbar ✓ ME > 20 GeV ¬ Kills qqbar ✓ m_{ME} < 3 GeV/c² ¬ Kills τ - τ ✓ BDT MVA ¬ Kills WW* continuum

(exploits opposite W± polarizations in H decay)

Signal & backgrounds before/after cuts:

H(WW*): $\sigma = 23 \text{ ab} \Rightarrow \sigma(\text{after}) = 8 \text{ ab}$ WW*: $\sigma = 16.3 \text{ fb} \Rightarrow \sigma(\text{after}) = 2.7 \text{ fb}$ qqbar: $\sigma = 22 \text{ pb} \Rightarrow \sigma(\text{after}) = 4 \text{ ab}$ $\tau - \tau$: $\sigma = 1 \text{ pb} \Rightarrow \sigma(\text{after}) = 2.6 \text{ ab}$

Decays of a 125 GeV Standard-Model Higgs boson

For L_{int}=10 ab⁻¹
S/
$$\sqrt{B}$$
 = 80/ $\sqrt{27.e3} \approx 0.5$
Significance ≈ 0.5

Channel 3: $e^+e^- \rightarrow H(WW^*) \rightarrow 2I2v$

- Final state (retains 60% of σ (WW*(2l2v)) = 7 ab):
 - 2 isolated $e,\mu,\tau(e),\tau(\mu) + ME > 2 \text{ GeV}$
 - + 0 non-isolated leptons or ch.had.
- Analysis cuts (Preselection kills qqbar entirely):

Signal & backgds before/after cuts: H(WW*): $\sigma = 4$ ab $\Rightarrow \sigma(after) = 2.1$ ab WW*: $\sigma = 2.9 \text{ fb} \Rightarrow \sigma(\text{after}) = 454 \text{ ab}$ $\sigma = 3.1 \text{ pb} \Rightarrow \sigma(\text{after}) = 51 \text{ ab}$ τ-τ: qqbar: $\sigma \sim 0 \text{ pb} \Rightarrow \sigma(\text{after}) = 0 \text{ ab}$ $\sigma = 24 \text{ ab} \Rightarrow \sigma(\text{after}) = 0.4 \text{ ab}$ ZZ*:

(1/N) dN / 0.23

0.5

cospair

0.8

0.2

For L_{int}=10 ab⁻¹ S/√B = 21/√5000 ≈ 0.3 Significance ≈ 0.3

3

5 6 7 8

(indicative distributions only: normalized to 1) Input variable: I2MEDeltaR

Decays of a 125 GeV Standard-Model Higgs boson

bottom/anti

bottom

57%

0.7223

I2MEDeltaR

charm/anti-charm ZZ γγ Z+γ others 3% 0.2% 0.2% 0.2% 0.6%

tau/anti-tau_3%

W+W

21%

Channel 4: $e^+e^- \rightarrow H(WW^*) \rightarrow 4j$

- Final state (retains 9% of σ(WW*(4j)) = 29 ab):
 4 jets (excl.) + >=1 jet c-tagged jet + 0 b-jets + 0 g-jets
 Jets with m_{j1j2}~m_w not both c-tagged + 0 τ(had)
 + 0 isolated e,μ,τ(e),τ(μ)
- Decays of a 125 GeV Standard-Model Higgs boson charm/anti-charm 27 VP Zry others fau/anti-tau 3% 23% 0.2% 0.2% 0.6% 9% 9% 9% 9% 9% 9% 9%

- Analysis cuts:
 - ✓ -In(y_{j3,jet4}) > 5., E_{total}>110 GeV
 ✓ max(M_{ii})= 60-85 GeV/c²
 - $\checkmark |\Delta \phi_{Z \text{ decay planes}}| < 1.$
 - ✓ BDT MVA

Signal & backgrounds before/after cuts:

H(WW*): $\sigma = 2.75 \text{ ab} \Rightarrow \sigma(\text{after}) = 1.4 \text{ ab}$ qqbar: $\sigma = 15.7 \text{ fb} \Rightarrow \sigma(\text{after}) = 2 \text{ fb}$ WW*: $\sigma = 1.4 \text{ fb} \Rightarrow \sigma(\text{after}) = 810 \text{ ab}$ $\tau - \tau$: $\sigma = 0 \text{ ab} \Rightarrow \sigma(\text{after}) = 0 \text{ ab}$ ZZ*: $\sigma = 4 \text{ ab} \Rightarrow \sigma(\text{after}) = 1.38 \text{ ab}$

For L_{int}=10 ab⁻¹ S/ \sqrt{B} = 14/ $\sqrt{29.e3} \approx 0.08$ Significance ≈ 0.08

Channel 5: $e^+e^- \rightarrow H(gg) \rightarrow jj$

- Final state (retains 30% of σ(gg) = 24 ab):
 2 gluon-tagged jets
 + 0 isolated e,μ,τ(e),τ(μ) + 0 τ(had)
- Analysis cuts:
 ✓ E_{tot} > 124 GeV Kills part of ττ,WW,ZZ

Signal & backgrounds before/after kin. cuts:

H(gg): $\sigma = 7.34 \text{ ab} \Rightarrow \sigma (after) = 3.91 \text{ ab}$ qqbar: $\sigma = 0.86 \text{ pb} \Rightarrow \sigma (after) = 18.7 \text{ fb}$ $\tau - \tau$: $\sigma = 607 \text{ ab} \Rightarrow \sigma (after) = 257 \text{ ab}$ WW*: $\sigma = 44.6 \text{ ab} \Rightarrow \sigma (after) = 26 \text{ ab}$ ZZ*: $\sigma = 0.74 \text{ ab} \Rightarrow \sigma (after) = 0.26 \text{ ab}$

For
$$L_{int}$$
=10 ab⁻¹
S/ \sqrt{B} = 39.1/ $\sqrt{1.9e5} \approx 0.09$
Significance ≈ 0.09

Decays of a 125 GeV Standard-Model Higgs boson

bottom/anti

bottom

57%

charm/anti-charm ZZ YY Z+Y others

tau/anti-tau_^{3%}

W+W

21%

Channel 6: $e^+e^- \rightarrow H \rightarrow \tau_{had} \tau_{had}$

- Final state (retains 65% of $\sigma(\tau\tau) = 7.4$ ab):
 - 2 jets (exclusive) + 2 tau-jet tagged + 0 isolated final-state leptons
 - Analysis cuts:
 - ✓ Kinematics cuts: None
 - ✓ MVA BDT applied to reduce dominant $Z^*/\gamma^* \rightarrow \tau\tau$ continuum.
- Signal & backgds before/after MVA cuts:

H($\tau\tau$): σ = 7.4 ab \Rightarrow σ (after) = 1.5 ab

- qqbar: $\sigma = 87 \text{ pb} \implies \sigma \text{ (after)} = 75 \text{ ab}$
- $\tau \tau$: $\sigma = 10 \text{ pb} \implies \sigma \text{ (after)} = 100 \text{ fb}$

For L_{int}=10 ab⁻¹ S/ \sqrt{B} = 15/ $\sqrt{1e+6} \approx 0.02$ Significance ≈ 0.02

David d'Enterria (CERN)

Channel 7: $e^+e^- \rightarrow H(ZZ^*) \rightarrow 2j2v$

- Final state (retains 75% of σ (WW*(2j2v)) = 2.3 ab): 2 jets (excl.) + ME > 30 GeV
 - + 0 isolated $e,\mu,\tau(e),\tau(\mu)$ + 0 $\tau(had)$
- Kinematic cuts:

✓ min($|m_{ME}-m_z|, |m_{ii}-m_z|$)<10 GeV ¬ Kills qqbar, τ - τ (indicative distributions only: normalized to 1) ✓ E_{tot} > 120 GeV [~] ¬ Kills qqbar, τ - τ

Signal & backgrounds before/after cuts:

✓ E_{ii} > 14 GeV ¬ Kills τ-τ

 \neg Kills qqbar,τ-τ

H(ZZ*): $\sigma = 1.75$ ab $\Rightarrow \sigma$ (after cuts) = 0.37 ab ZZ*: $\sigma = 179 \text{ ab} \Rightarrow \sigma(\text{after cuts}) = 25 \text{ ab}$ qqbar: $\sigma = 963 \text{ fb} \Rightarrow \sigma(\text{after cuts}) = 4 \text{ ab}$ τ - τ : σ = 471 ab \Rightarrow σ (after cuts) = 2 ab WW*: $\sigma = 526 \text{ ab} \Rightarrow \sigma(\text{after cuts}) = 0 \text{ ab}$

FCC-ee Phys. Workshop, CERN, Feb'16

 $\checkmark |\eta_{ii}| < 2$

For
$$L_{int}$$
=10 ab⁻¹
S/ \sqrt{B} = 3.7/ $\sqrt{316} \approx 0.21$
Significance ≈ 0.21

Channel 8: $e^+e^- \rightarrow H(ZZ^*) \rightarrow 2I2j$

Input variable: Ell

Signal

60

80

0.3

0.25

0.2

0.15

0.1

0.05

0

20

- Final state (retains 73% of σ (WW*(2l2j)) = 1.14 ab):
 - 2 isolated opposite-charge leptons $e,\mu,\tau(e),\tau(\mu)$
 - + 2 jets (exclusive)
- Kinematic cuts:

✓ min($|M_{\parallel}-M_{z}|$, $|M_{\parallel}-M_{z}|$)< 20GeV ¬ Kills qqbar, τ - τ ✓ ME < 10 GeV ¬ Kills τ-τ</p>

✓ M_{μ} > 10 GeV/c² ¬ Kills τ-τ

✓ E_{lepton} > 6 GeV ¬ Kills qqbar ✓ E_{lepton} > 6 GeV ¬ Kills qqbar ✓ E_{l1} + E_{l2} > 20 GeV ¬ Kills qqbar ξ

 \checkmark M₁ > 20 GeV/c² \neg Kills qqbar

Signal & backgrounds before/after cuts: $\sigma = 0.84 \text{ ab} \Rightarrow \sigma(\text{after}) = 0.27 \text{ ab}$ H(ZZ*): ZZ*: $\sigma = 87 \text{ ab} \implies \sigma(\text{after}) = 23 \text{ ab}$ τ - τ : $\sigma \sim 0.8 \text{ pb} \Rightarrow \sigma(\text{after}) = 2.5 \text{ ab}$ σ = 3.1 fb \Rightarrow σ (after) = 0.04 ab WW*:

 $\sigma(after) = 4 ab$ qqbar: $\sigma = 17 \text{ pb} \Rightarrow$

(indicative distributions only: normalized to 1)

Channel 9: $e^+e^- \rightarrow H(ZZ^*) \rightarrow 2I2v$

- Final state (retains 60% of $\sigma(ZZ^*(2I2v)) = 0.34$ ab): 2 isolated e, μ , τ (e), τ (μ) + ME>2 GeV
 - + 0 non-isolated leptons or ch.had.
- Analysis cuts (Preselection kills qqbar entirely):

Signal & backgds before/after cuts:

H(ZZ*): $\sigma = 0.2 \text{ ab} \Rightarrow \sigma(\text{after}) = 0.04 \text{ ab}$

- WW*: $\sigma = 29 \text{ fb} \Rightarrow \sigma(\text{after}) = 144 \text{ ab}$
- τ - τ : σ = 3.1 pb \Rightarrow σ (after) = 51 ab

qqbar:
$$\sigma \sim 0 \text{ pb} \Rightarrow \sigma(\text{after}) = 0 \text{ ab}$$
ZZ*: $\sigma = 24 \text{ ab} \Rightarrow \sigma(\text{after}) = 9 \text{ ab}$

FCC-ee Phys. Workshop, CERN, Feb'16

For L_{int}=10 ab⁻¹ S/ \sqrt{B} = 0.4/ $\sqrt{2000} \approx 0.01$ Significance ≈ 0.01

Analysis cuts:

- ✓ E_{γ} > 60 GeV reduces diphoton continuum & Bhabha scatt. backgd where e⁺e⁻ mis'id for γ with P≈0.35%.
- ✓ MVA BDT doesn't improve result
- Signal & backgds before/after cuts:
 - H($\gamma\gamma$): σ = 0.61 ab \Rightarrow σ (after) = 0.3 ab
 - $\gamma\gamma: \qquad \sigma = 25 \text{ pb} \qquad \Rightarrow \ \sigma \text{ (after)} = 900 \text{ fb}$
 - e^+e^- : $\sigma = 2.3 \text{ pb} \implies \sigma \text{ (after)} = 59 \text{ ab}$

David d'Enterria (CERN)

Channel 10: $e^+e^- \rightarrow H \rightarrow \gamma \gamma$

Final state (retains 95% of the σ(ττ) = 0.64 ab):
 2 isolated photons (exclusive) + nothing else

For L_{int} =10 ab⁻¹ S/ \sqrt{B} = 30/ $\sqrt{1.e4} \approx 0.01$ Significance ≈ 0.01

Significance: Multi-Channel Combination

Channels combination using Roostats-based tool for LHC Higgs analyses: Profile likelihood & hybrid significances all give ~identical results, which are also very close to naive S/√B expectation (no background uncertainty).

Channel	Significance (1 ab ⁻¹)	Significance (10 ab ⁻¹)
WW→Iv2j,2l2v,4j	0.15⊕0.09⊕0.03	0.50⊕0.30⊕0.08
$ZZ \rightarrow 2j2\nu, 2l2j, 2l2\nu$	0.07⊕0.05⊕0.01	0.21⊕0.16⊕0.03
bb	0.03	0.10
gg	0.03	0.09
ττ	-	0.02
γγ	—	0.01
Combined	0.2	0.7

■ For 10 ab⁻¹: Significance ≈ 0.7 (preliminary, optimizations under study) Limit (95% CL) for branching ratio: $BR(H \rightarrow ee) < 2.8 \times BR_{SM}(H \rightarrow ee)$ Limit (95% CL) for SM Yukawa: $g_{eH} < 1.7 \times g_{eH,SM}$

FCC-ee Phys. Workshop, CERN, Feb'16

David d'Enterria (CERN)

Significance vs. L_{int} & √s_{spread}

 L_{int} =10 ab⁻¹: Signif. = 1 σ . Target L_{int} = 45 ab⁻¹ (crab waist, 4 IPs): Signif. = 2.1 σ 3 σ evidence would require 2 yrs running at Higgs pole with target luminosity.

FCC-ee Phys. Workshop, CERN, Feb'16

g_{eH} Yukawa limits vs. L_{int} & √s_{spread}

Significance increase with polarized beams

 Polarization of beams would enhance the signal by (1+P²) & suppress background by (1-P²). However, realistic polarization estimates (P=20-30%) are clearly insufficient and higher polarizations would reduce luminosity...

- Significance increase:
 - P = 68%: ×2 significance P = 90%: ×4 significance

Conclusions

Challenging performances: Mono-chromatization to achieve $\sqrt{s_{spread}} \sim \Gamma_{H}$

Fundamental & unique physics accessible:

- → Electron Yukawa coupling
- → Higgs width measurable ("natural" threshold scan)?

FCC-ee Phys. Workshop, CERN, Feb'16

Backup slides

$e^+e^- \rightarrow H(WW^*) \rightarrow 4j$

The qqbar background σ ~O(100 pb) produces mainly 2-jet events, which can be killed by cutting on event shape variables (sphericity & aplanarity), but ~6 pb remains from quarks that radiate gluons to produce 4-jet events.

- Tagging b-jets (which are produced ~20% of the time in the qqbar background and ~5% of the time in the signal) and removing events with any b-tagged jets provides marginal improvement in separation, but the qqbar background still dominates and washes out the signal almost entirely
- Attempts to reconstruct W mass to apply cuts met with little success (low discriminating power). Try hemisphere separation ...