Higgs production from sterile neutrinos at the FCC-ee

Eros Cazzato

e.cazzato@unibas.ch

Prof. S. Antusch & O. Fischer

University of Basel, Switzerland

FCC-ee Physics Workshop (TLEP10) CERN, 4 February 2016

Motivation for Sterile Neutrinos

- Observation of neutrino oscillations requires at least two of the light neutrinos to be massive.
- Neutrino masses can be accounted for efficiently by right-handed or "sterile neutrinos".

The Seesaw Mechanism

• Naive
$$(1 \ \nu_L, 1 \ \nu_R)$$
 version: $m_{\nu} = \frac{1}{2} \frac{v_{\rm EW}^2 |y_{\nu}|^2}{M_R}$

• More realistic example, the $(2 \nu_L, 2 \nu_R)$ version:

$$Y_{\nu} = \begin{pmatrix} \mathcal{O}(y_{\nu}) & 0\\ 0 & \mathcal{O}(y_{\nu}) \end{pmatrix}, \qquad \begin{pmatrix} M_R & 0\\ 0 & M_R + \varepsilon \end{pmatrix}$$

$$M_R \gg y_{\nu} v_{\rm EW} \quad \Rightarrow \quad m_{\nu_i} = \frac{v_{\rm EW}^2 \mathcal{O}(y_{\nu}^2)}{M_R} (1 + \varepsilon)$$

- $\Rightarrow\,$ Knowledge of m_{ν_i} implies a relation between y_{ν} and $M_R.$
- \Rightarrow In general not very promising to observe at collider experiments: $M_R\sim 10^2~{\rm GeV}\Rightarrow y_\nu\sim \mathcal{O}(10^{-6})$

Lowscale Seesaw

- Different realisation which uses a specific structure of the Yukawa and mass matrices that can be realised by symmetries (no fine tuning), e.g. approximate "lepton-number-like" symmetry.
- A (2 ν_L , 2 ν_R) example:

$$Y_{\nu} = \begin{pmatrix} \mathcal{O}(y_{\nu}) & 0\\ \mathcal{O}(y_{\nu}) & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & M_R\\ M_R & \varepsilon \end{pmatrix}$$
$$\Rightarrow m_{\nu_i} = 0 + \varepsilon \frac{v_{\rm EW}^2 \mathcal{O}(y_{\nu}^2)}{M_R^2}$$

- \Rightarrow In general: no fixed relation between y_{ν} and M_R .
- \Rightarrow Large y_{ν} are compatible with neutrino oscillations.
- \Rightarrow Enters promising region for testable effects at collider experiments.

Symmetry Protected Seesaw Scenario

 Assumption: collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry, such that

$$\mathscr{L}_N = -\frac{1}{2} \overline{N_R^1} M (N_R^2)^c - y_{\nu_\alpha} \overline{N_R^1} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

- \blacksquare The active-sterile mixing parameter: $\theta_{\alpha}=\frac{y_{\nu_{\alpha}}v_{\rm EW}}{\sqrt{2}M}$
- The leptonic mixing matrix to leading order in $heta_{lpha}$

$$\mathcal{U} = \begin{pmatrix} \mathcal{N}_{e1} \ \mathcal{N}_{e2} \ \mathcal{N}_{e3} \ -\frac{\mathrm{i}}{\sqrt{2}} \theta_{e} & \frac{1}{\sqrt{2}} \theta_{e} \\ \mathcal{N}_{\mu 1} \ \mathcal{N}_{\mu 2} \ \mathcal{N}_{\mu 3} \ -\frac{\mathrm{i}}{\sqrt{2}} \theta_{\mu} & \frac{1}{\sqrt{2}} \theta_{\mu} \\ \mathcal{N}_{\tau 1} \ \mathcal{N}_{\tau 2} \ \mathcal{N}_{\tau 3} \ -\frac{\mathrm{i}}{\sqrt{2}} \theta_{\tau} & \frac{1}{\sqrt{2}} \theta_{\tau} \\ 0 \ 0 \ 0 & \frac{\mathrm{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \theta_{\tau} \\ -\theta_{e}^{*} \ -\theta_{\mu}^{*} \ -\theta_{\tau}^{*} \ -\frac{\mathrm{i}}{\sqrt{2}} \left(1 - \frac{\theta^{2}}{2}\right) \ \frac{1}{\sqrt{2}} \left(1 - \frac{\theta^{2}}{2}\right) \end{pmatrix}$$

- \Rightarrow Heavy neutrino mass eigenstates interact with weak gauge bosons ${}_{\propto} heta_{lpha}$
 - \blacksquare With EW scale $M,\,y_{\nu_{\alpha}}$ constrained to at most $\mathcal{O}(10^{-2})$
- $\Rightarrow\,$ Enabled Higgs production through sterile neutrinos at the FCC-ee.

Resonant Mono-Higgs from Sterile Neutrinos based on arXiv:1512.06035

Mono-Higgs = Higgs plus missing energy

- Generally: $\sigma_{h\nu\nu} = \sigma_{h\nu\nu}^{\text{SM}} + \sigma_{h\nu\nu}^{\text{Non-U}} + \sigma_{h\nu\nu}^{\text{Direct}}$.
- $\sigma_{h\nu\nu}^{\text{SM}}$: Higgs Strahlung and WW fusion.
- σ^{Direct}: resonantly enhanced contribution from on-shell production of heavy neutrinos.
 - W-exchange process only sensitive to y_{νe}.
 - *Z*-exchange process produces all flavours.
- $\sigma_{h\nu\nu}^{\text{Non-U}}$: indirect effect from the PMNS matrix.

Resonant Mono-Higgs-Production Cross Section

- Using present upper bounds at 68% Bayesian confidence level.
- \Rightarrow Resonant mono-Higgs production mostly sensitive to $| heta_e|$.
- $\sigma_{h\nu\nu}^{\rm SM} \sim 54$ fb for \sqrt{s} of 240 and 350 GeV

Software Framework

- Event simulation: WHIZARD 2.2.7
- Showering: PYTHIA 6.427
- Reconstruction: Delphes 3.2.0 (ILD card)
- Anaylsis: Madanalysis5
- \Rightarrow Mono-Higgs search channel: di-jet + missing energy

The Higgs Peak: $|y_{\nu_e}| = 0.036 \& M = 152 \ GeV \ at \ 240 \ GeV \ for \ 10 \ ab^{-1}$

Our cuts (not fully optimised):

- Pre selection: $N_j = 2, N_\ell = 0, \ 110 < M_{jj} < 125 \text{ GeV}$
- For the example: $P_{jj} > 70, \not E_T > 15$ GeV

Event counts: (starting with pre selection)

 $egin{array}{cccc} {\sf BKG} & 548{\sf k} &
ightarrow & 18{\sf k} \ \sigma^{
m Direct}_{h
u
u} & 15{\sf k} &
ightarrow & 4.8{\sf k} \end{array}$

 $\Rightarrow \left| \frac{S}{\sqrt{S+B}} \simeq 30 \right|$

Eros Cazzato (University of Basel)

Contamination of SM Parameters

Higgs properties obtained by applying "standard cuts" on the Higgs event sample at lepton colliders:

\sqrt{s}	240 GeV	350 GeV
Missing Mass [GeV]	$80 \le M_{ m miss} \le 140$	$50 \le M_{ m miss} \le 240$
Transverse P [GeV]	$20 \le P_T \le 70$	$10 \leq P_T \leq 140$
Longitudinal P [GeV]	$ P_L < 60$	$ P_L < 130$
Maximum P [GeV]	P < 30	P < 60
Di-jet Mass [GeV]	$100 \le M_{ij} \le 130$	$100 \le M_{ij} \le 130$
Angle (jets) [Rad]	$\alpha > 1.38$	$\alpha > 1.38$

Contamination of SM Parameters

Higgs properties obtained by applying "standard cuts" on the Higgs event sample at lepton colliders:

\sqrt{s}	240 GeV	350 GeV
Missing Mass [GeV]	$80 \le M_{\rm miss} \le 140$	$50 \le M_{ m miss} \le 240$
Transverse P [GeV]	$20 \leq P_T \leq 70$	$10 \leq P_T \leq 140$
Longitudinal P [GeV]	$ \bar{P}_L < 60$	$ \bar{P}_L < 130$
Maximum P [GeV]	P < 30	P < 60
Di-jet Mass [GeV]	$100 \le M_{ij} \le 130$	$100 \le M_{ij} \le 130$
Angle (jets) [Rad]	$\alpha > 1.38$	$\alpha > 1.38$

 \Rightarrow Contamination of Higgs sample with resonantly produced Higgs events

Sensitivity of the Mono-Higgs Channel to Neutrino Mixing at the FCC-ee at 1σ

Considered luminosities:

10 ab^{-1} for 240 GeV | 3.5 ab^{-1} for 350 GeV | 1 ab^{-1} for 500 GeV

⇒ Reduction in luminosity is partly compensated by gain in production cross section.

Eros Cazzato (University of Basel)

Summary and Conclusions

- Symmetry protected seesaw scenarios allow for large neutrino Yukawa couplings and masses in the interesting range.
- Higher center-of-mass energies lead to increased mono-Higgs production cross sections from sterile neutrinos.
- $\sqrt{s} = 350$ GeV is even more sensitive than 240 GeV.
- A contamination of the Higgs sample with resonantly produced Higgs events can lead to a deviation of the Higgs parameters.
- Sensitivity to $|y_{\nu_e}|$ down to 5×10^{-3} is possible.
 - Important for understanding the data.
 - **Complementarity** to other searches for sterile Neutrinos.
- FCC-ee yields valuable information on the neutrino mass mechanism via the mono-Higgs channel.

Thank you for your attention.

Backup I: Prospects of Sensitivity at the FCC-ee

* Preliminary estimate using statistical uncertainty only.

Backup II: Higgs Boson Branching Ratio into Neutrinos

- From "indirect" tests and Delphi.
- $\mathcal{O}(1)$ branching ratio possible.
- ⇒ Possible effect on Higgs decay rates into Standard Model particles.

Antusch, Fischer; arXiv:1502.05915 (2015)

Backup III: Cross Sections for SM Background

Final state	$\sigma^{\rm SM}$ @240 GeV	$\sigma^{ m SM}@350~{ m GeV}$	$\sigma^{ m SM}@500~{ m GeV}$
$b\overline{b}\nu\nu$	146.492	134.614	183.594
$c\bar{c}\nu\nu$	88.0172	73.7956	82.7041
jj u u	528.8	463.1	500.3
$b \overline{b} b \overline{b}$	81.2629	47.6152	25.5571
$b\bar{b}c\bar{c}$	146.566	87.6518	51.6446
$b \overline{b} j j$	6820.6	4259.5	2537.8
$b\bar{b}e^+e^-$	2080.87	2500.82	2920.9
$b\bar{b}\tau^+\tau^-$	34.1905	19.7975	11.0619
$c\bar{c}\tau^+\tau^-$	25.2553	15.0695	9.15227
$jj\tau^+\tau^-$	116.0	72.4	37.6
$\tau^+ \tau^- \nu \nu$	235.89	163.851	119.989
single top	0.012	63.3	1092
$t\bar{t}$		322.	574.

All cross sections in fb.