

The CLIC Detector Concept CLICdet_2015

Wolfgang Klempt CERN/EP on behalf of the CLICdp collaboration

10th FCC-ee physics workshop 5 February 2016

Outline

- Detector requirements
- Detector layout
- Vertex & tracker
- Calorimetry
- Simulation & reconstruction
- Remark on requirements for FCC-ee detector

Detector Requirements

- Momentum resolution
 - Higgs recoil mass, smuon endpoint,
 Higgs coupling to muons

 $\rightarrow \sigma_{P_T}/p_T^2 \sim 2 \times 10^{-5} \text{GeV}^{-1}$

Jet energy resolution
 – Separation of W/Z/H di-jets

 $\rightarrow \sigma_E / E \sim 3.5\%$ for E > 100 GeV

- Impact parameter resolution -c/b-tagging, Higgs branching ratios $\rightarrow \sigma_{r\phi} \sim 5 \oplus 15/(p[\text{GeV}] \sin^{\frac{3}{2}} \theta) \mu m$
- Also:
 - Beam induced backgrounds
 - CLIC beam structure

CLIC Beam Structure

Δ

	CLIC at 3 TeV							
Luminosity	5.9×10 ³⁴ cm ⁻² s ⁻¹	Requirements for time						
Bunch separation	0.5 ns	resolution and stamping						
#Bunches per train	312							
Train duration	156 ns	Low Duty cycle =>						
Train repetition rate	50 Hz	Read out all (Triggerless) Powerpulsing						
Particles per bunch	3.72×10 ⁹							
Crossing angle	20 mrad	Beam spots very small						
σ _x / σ _y [nm]	≈ 45 / 1	Beams strongly focused						
σ _z [μm]	44	\Rightarrow Very high E-Fields						
CLIC bunch structure 5/2/16								

Both backgrounds lead to:

- ⇒High occupancies : influence detector design
- \Rightarrow 10 nsec time stamping for tracker hits
- ⇒1 nsec accuracy for calorimeter hits 5/2/16 W. Klempt / 10th FCC-ee physics workshop

Evolution of Detector Designs

ILD and SID: two general purpose detectors for ILC (LOI 2009-2010) For the CLIC CDR (2012): Two general-purpose CLIC detector concepts Based on initial ILC concepts but adapted to CLIC conditions Since 2009 10 - 20 people were working on the project

Concept	ILD (ILC)	CLIC_ILD	SiD (ILC)	CLIC_SiD	CLCdet_2015	CMS
Tracker	TPC/Silicon	TPC/Silicon	Silicon	Silicon	Silicon	Silicon
Solenoid Field [T]	3.5	4	5	5	4	3.8
Solenoid Free Bore [m]	3.3	3.4	2.6	2.7	3.4	3.0
Solenoid Length [m]	8	8.3	6	6.5	8.3	13
VTX Inner Radius [mm]	16	31	14	27	31	40
ECAL Inner Radius [m]	1.8	1.8	1.3	1.3	1.5	1.3
ECAL ΔR [mm]	172	172	135	135	159	500
HCAL Absorber B / E	Fe	W/Fe	Fe	W/Fe	Fe	Brass
HCAL λ _I	5.5	7.5	4.8	7.5	7.55	5.8 Barrel/10 EC
Overall Height [m]	14	14	12	14	14	14.6
Overall Length [m]	13.2	12.8	11.2	12.8	10.4	21.6

Forward Region Layout in CLICdet 2015 **ECAL plug** 1000 mm in old design LumiCal 500 mm **BeamCal HCal** (incl.graphite) (with cutout for LumiCal)

Tracker acceptance down to \approx 140 mrad (due to background from incoherent pairs) Electron tagging:

- LumiCal: 44-80mrad with 95%-99% efficiency
- BeamCal: ≥15 mrad with 70%-80% efficiency

Extend **HCal Endcap coverage** closer to beampipe Optimized for a working hypothesis of an $L^* = 6$ m \rightarrow QD0 outside detector region

- Simplified services, no need for an anti-solenoid
- No need for rigid support
- Smaller support outer radius: 250 mm

Vertex Detector

Layout optimized for flavor tagging, resolution and occupancy

- Effect of material very critical
 => cooling with airflow
- Inner Radius
 Beam background ↔ B-field
- Spiral geometry of forward disks (needed for air cooling)
- Single layer vs. double layers

In CLICdet_2015:

- Double layers =>0.2%X₀ per (single) layer
- $R_{in} = 31 \text{ mm}$
- Pixel size: 25 µm
- 3 μm single point resolution

Tracker Technology

Inner and outer part separated by support tube 5-6 barrel, 7 forward layers, R~1.5m, L~4.6m

Aim for 7 μm single-point resolution: Sensor technology? Readout cell size? Charge sharing? dE/dx information?

Occupancy from backgrounds defines strip length Time stamping of hits with 10 nsec required

Developed simulation (Geant + TCAD + FE) Good agreement with test beam data

PFA in Calorimetry

Jet energy resolution (JER) drives the overall detector design $(\sigma_E/E \sim 3.5\% \text{ for E} > 100 \text{ GeV})$ => fine-grained calorimetry + Particle Flow Analysis (PFA)

E-Cal Optimization

Layers: Not very important for higher energy jets (PFA confusion dominates): **Not much more improvement from 25 to 30 layers** In simulation kept constant depth of 23 X_0

Si vs Scint: No significant effect on JER

Cell size: JER **degradation** from 3% to ~3.5% when increasing cell size from 5x5 mm² to 15x15 mm²

HCAL Optimization

Example: HCal Barrel Absorber

- 10 mm Tungsten (W) 70 Layers
- 19 mm Steel (Fe) 60 Layers
- Total thickness 7.5 $\lambda_{\rm I}$

Full Geant4 detector simulation + PandoraPFA + FastJet

JER Performance shown to be **similar** for **tungsten** and **steel**

Steel is cheaper and more easy to use for construction

E.g. study overlap of m_W and m_Z measurement in $WW \rightarrow \gamma \ell ud$ and $ZZ \rightarrow \nu \nu dd$ events

O The shaded area gives one of the points on the plot below. Repeat for both models, all energies. Do also with background.

DD4hep Overview

DD4hep includes a standardized geometry description giving common input for: simulation, reconstruction and analysis All pieces are interfaced with python Ready to use

Requirements for FCC-ee Detector (from Machine)

30 mrad beam crossing angle:

- Rather big, do you really need it?
- May create problems with geometry: Beam pipe and forward acceptance Down to ~3-4 nsec bunch spacing:
- How much interaction or background events per bunch crossing?
- Do you need to identify bunch crossing? Why not look at it as a DC machine?
- Do you need trigger or can you take all data to tape?
- In principle 3 nsec is ok for fast standard detectors, but power consumption?
- L* = 2m (final focus quadrupoles inside detector):
- How big are (superconducting?) quadrupoles?
- How precise has positioning to be?
- ⇒ Geometry problem => compromise on forward acceptance

Compensating solenoid 1m away from vertex:

- What is the size of it?
- Influence on forward acceptance even bigger than for quadrupoles!
- How to measure luminosity?

Detectors for FCC-ee (2)

How can you optimize?

Momentum resolution is given by:

$$\frac{dP_T}{P_T} \sim \left(\frac{f(N) * P_T * \sigma(r\varphi)}{e * B * R^2}\right) \bigoplus \left(\frac{13.3 \ MeV/c}{e * B * R * \sqrt{sin\theta}} * \sqrt{\frac{g(N) * t}{X_0}}\right)$$

for N = 6 uniformly distributed layers: f(N) = 0.982 and g(N) = 1.28R_{max} is determined by cryostat: R_{max} ≈ 1.5 m (if calorimeter inside cryostat with R ≈ 3.5 m)

Impact parameter resolution:

$$\sigma(d_0) \sim \left(A * \frac{\sigma(r\varphi)}{r_2 - r_1} * (r_1 \oplus r_2)\right) \oplus \left(B * \frac{r_1}{P_T * \sqrt{\sin\theta}} * \sqrt{\frac{t}{X_0}}\right)$$

Calorimetry:

- Same resolution as CLICdet-2015 but at lower jet energies
 => Particle Flow Analysis, maybe with higher segmentation?
- Energies are smaller. Can you make H-Cal thinner ? From 7.5 $\lambda_{\rm I}$ to 6.5 $\lambda_{\rm I}$
- Maybe you can improve E-Cal resolution by using crystals divided in r? would improve energy resolution of single photons

Conclusions

New detector concept CLICdet_2015 has been developed from previous CDR detector concepts using:

- B = 4 T
- 4.6 long, 3m diameter all Si Tracker
- 25 layer W+Si Ecal depth 23 X_0 / 1 λ_l
- 60 layer Fe + Scint Hcal depth 7.5 λ_1
- Thin end cap yoke with compensating coils

Detector for FCC-ee has very stringent requirements and presents a challenge to design and build

Backup

Pointing geometry Increasing barrel length Geometry using equal barrel length

5/2/16

Magnetic System Layout

View of the magnet system with "thin" Endcaps

Compensating ring coils (like in LHCb) allow for lower Bz component outside magnet B-field axial component with and without end coils as function of z

Hit-rate in Vertex detector - Barrel

• Hit-rate from incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the vertex detector

Occupancy in Vertex detector - Barrel

- \blacktriangleright Occupancy from incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the vertex detector
- Cluster size 5, safety factors of 5 for incoherent pair production, 2 for $\gamma\gamma \rightarrow$ hadrons

Hit-rate in main tracker - Barrel

• Hit-rate from incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the main tracker barrel

Occupancy in main tracker - Barrel

- \blacktriangleright Occupancy from incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the main tracker barrel
- Cluster size 2.6, safety factors of 5 for incoherent pair production, 2 for $\gamma\gamma \rightarrow$ hadrons

Hit-rate in main tracker - Endcaps

• Hit-rate from incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the main tracker endcaps

Occupancy in main tracker - Endcap

- Occupancy from incoherent pairs and $\gamma\gamma \rightarrow$ hadrons in the main tracker endcaps
- Cluster size 2.6, safety factors of 5 for incoherent pair production, 2 for $\gamma\gamma \rightarrow$ hadrons

High occupancy at low radius of the innermost forward disc