# Global Analysis, Combination & Complementarity

The vision: explore 10 TeV scale directly (100 TeV pp) + indirectly (e<sup>+</sup>e<sup>-</sup>)



## The Objectives

- How do FCC-hh, FCC-ee and FCC-he complement each other? Cf, LEP and LHC
- What are the synergies between them?
  - And between them and other accelerators (LHC)?
- Depend on inputs from specific FCC-xx analyses
- Broad subject: not really started
- Illustrate with specific physics examples
  - Higgs and precision electroweak
  - Supersymmetry
  - -X(750)

### Possible FCC-ee Precision Measurements

| Observable                     | Measurement             | Current precision                          | FCC stat. | Possible syst. |   | Challengt                        |
|--------------------------------|-------------------------|--------------------------------------------|-----------|----------------|---|----------------------------------|
| m <sub>z</sub> (MeV)           | 7 neak                  | 91187.5 ± 2.1                              | 0.005     | < 0.1          |   | QED corr.                        |
| Γ <sub>Z</sub> (MeV)           |                         | 2495.2 ± 2.3                               | 0.008     | < 0.1          |   | QED corr.                        |
| R <sub>I</sub>                 | $\pm 4 \text{ GeV}$     | 20.767 ± 0.025                             | 0.0001    | < 0.001        |   | Statistics                       |
| R <sub>b</sub>                 | for $\alpha_{\rm EM}$ , | 0.21629 ± 0.00066                          | 0.000003  | < 0.00006      |   | g → bb                           |
| N,                             | line chone              | 2.984 ± 0.008                              | 0.00004   | < 0.004        |   | Lumi meast                       |
| α <sub>s</sub> (m <sub>z</sub> | mie snape               | 0.1190 ± 0.0025                            | 0.00001   | 0.0001         |   | New Physics                      |
| ۲۹ <sub>w</sub> (Me ۷)         |                         | 80385 <b>± 15</b>                          | 0.3       | < 0.5          |   | QED Corr.                        |
| N <sub>v</sub>                 | throchold               | 2.92 <b>± 0.05</b><br>2.984 <b>± 0.008</b> | 0.001     | < 0.001        |   | ?                                |
| α₅(m <sub>w</sub> )            | unesnoia                | B <sub>had</sub> = 67.41 ± 0.27            | 0.00018   | < 0.0001       |   | CKM Matrix                       |
| n <sub>top</sub> (MeX)         | t thar                  | 173200 ± 900                               | 10        | 10             | C | CD (~40 MeV                      |
| $\Gamma_{top}$ (MeV)           |                         | ?                                          | 12        | ?              |   | α <sub>s</sub> (m <sub>z</sub> ) |
| $\lambda_{top}$                | threshold               | $\mu = 2.5 \pm 1.05$                       | 13%       | ?              |   | α <mark>₅(m</mark> z)            |



#### Possible Future Higgs Measurements

| Facility                                 |              | ILC          |              | ILC(LumiUp)                     | TLI    | P (4 IP) |           | CLIC      |              |
|------------------------------------------|--------------|--------------|--------------|---------------------------------|--------|----------|-----------|-----------|--------------|
| $\sqrt{s}$ (GeV)                         | 250          | 500          | 1000         | 250/500/1000                    | 240    | 350      | 350       | 1400      | 3000         |
| $\int \mathcal{L} dt \ (\text{fb}^{-1})$ | 250          | +500         | +1000        | $1150 + 1600 + 2500^{\ddagger}$ | 10000  | +2600    | 500       | +1500     | +2000        |
| $P(e^-,e^+)$                             | (-0.8, +0.3) | (-0.8, +0.3) | (-0.8, +0.2) | (same)                          | (0, 0) | (0, 0)   | (-0.8, 0) | (-0.8, 0) | (-0.8, 0)    |
| $\Gamma_H$                               | 12%          | 5.0%         | 4.6%         | 2.5%                            | 1.9%   | 1.0%     | 9.2%      | 8.5%      | 8.4%         |
|                                          |              |              |              |                                 |        |          |           |           |              |
| $\kappa_{\gamma}$                        | 18%          | 8.4%         | 4.0%         | 2.4%                            | 1.7%   | 1.5%     | _         | 5.9%      | $<\!\!5.9\%$ |
| $\kappa_g$                               | 6.4%         | 2.3%         | 1.6%         | 0.9%                            | 1.1%   | 0.8%     | 4.1%      | 2.3%      | 2.2%         |
| $\kappa_W$                               | 4.9%         | 1.2%         | 1.2%         | 0.6%                            | 0.85%  | 0.19%    | 2.6%      | 2.1%      | 2.1%         |
| $\kappa_Z$                               | 1.3%         | 1.0%         | 1.0%         | 0.5%                            | 0.16%  | 0.15%    | 2.1%      | 2.1%      | 2.1%         |
|                                          |              |              |              |                                 |        |          |           |           |              |
| $\kappa_{\mu}$                           | 91%          | 91%          | 16%          | 10%                             | 6.4%   | 6.2%     | -         | 11%       | 5.6%         |
| $\kappa_{\tau}$                          | 5.8%         | 2.4%         | 1.8%         | 1.0%                            | 0.94%  | 0.54%    | 4.0%      | 2.5%      | $<\!\!2.5\%$ |
| $\kappa_c$                               | 6.8%         | 2.8%         | 1.8%         | 1.1%                            | 1.0%   | 0.71%    | 3.8%      | 2.4%      | 2.2%         |
| $\kappa_b$                               | 5.3%         | 1.7%         | 1.3%         | 0.8%                            | 0.88%  | 0.42%    | 2.8%      | 2.2%      | 2.1%         |
| $\kappa_t$                               | —            | 14%          | 3.2%         | 2.0%                            | -      | 13%      | _         | 4.5%      | $<\!\!4.5\%$ |
| $BR_{inv}$                               | 0.9%         | < 0.9%       | < 0.9%       | 0.4%                            | 0.19%  | < 0.19%  |           |           |              |

• Need to reduce theoretical uncertainties to match

• Essential for new physics interpretations



#### Possible Future Higgs Measurements



#### Standard Model Effective Field Theory

- Higher-dimensional operators as relics of higherenergy physics, e.g., dimension 6:  $\mathcal{L}_{eff} = \sum_{n} \frac{f_n}{\Lambda^2} \mathcal{O}_n$
- Operators constrained by  $SU(2) \times U(1)$  symmetry:

$$\mathcal{L} \supset \frac{\bar{c}_{H}}{2v^{2}} \partial^{\mu} [\Phi^{\dagger}\Phi] \partial_{\mu} [\Phi^{\dagger}\Phi] + \frac{g'^{2} \bar{c}_{\gamma}}{m_{W}^{2}} \Phi^{\dagger}\Phi B_{\mu\nu} B^{\mu\nu} + \frac{g_{s}^{2} \bar{c}_{g}}{m_{W}^{2}} \Phi^{\dagger}\Phi G_{\mu\nu}^{a} G_{a}^{\mu\nu} + \frac{2ig \bar{c}_{HW}}{m_{W}^{2}} [D^{\mu}\Phi^{\dagger}T_{2k}D^{\nu}\Phi] W_{\mu\nu}^{k} + \frac{ig' \bar{c}_{HB}}{m_{W}^{2}} [D^{\mu}\Phi^{\dagger}D^{\nu}\Phi] B_{\mu\nu} + \frac{ig \bar{c}_{W}}{m_{W}^{2}} [\Phi^{\dagger}T_{2k}\overleftrightarrow{D}^{\mu}\Phi] D^{\nu} W_{\mu\nu}^{k} + \frac{ig' \bar{c}_{B}}{2m_{W}^{2}} [\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi] \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_{t}}{v^{2}} y_{t}\Phi^{\dagger}\Phi \Phi^{\dagger} \cdot \bar{Q}_{L}t_{R} + \frac{\bar{c}_{b}}{v^{2}} y_{b}\Phi^{\dagger}\Phi \Phi \cdot \bar{Q}_{L}b_{R} + \frac{\bar{c}_{\tau}}{v^{2}} y_{\tau} \Phi^{\dagger}\Phi \Phi \cdot \bar{L}_{L}\tau_{R}$$

• Constrain with precision EW, Higgs data, TGCs ...

**FCC-ee** Higgs & TGC Measurements



• LHC constraints

JE & Tevong You, arXiv:1510.04561

• **FCC-ee** constraints: see  $\Lambda \sim 10$  TeV?

## **r CC-ee** Higgs & TGC Measurements



Higgs and TGCs

 Shadings:
 – With/without theoretical EWPT uncertainties  Shadings of green:
 – Effect of including TGCs at ILC

Should extend to include prospective FCC-hh measurements of TGCs, ...

## what H Physics can FCC-hh do?

| Big statistics! |       | N100  | N100 / N8             | N100 / N14 |  |
|-----------------|-------|-------|-----------------------|------------|--|
|                 | gg→H  | 16 G  | 4.2 × 10 <sup>4</sup> | 110        |  |
|                 | VBF   | 1.6 G | 5.  ×  0 <sup>4</sup> | 120        |  |
| WH              |       | 320 M | 2.3 × 10 <sup>4</sup> | 66         |  |
|                 | ZH    | 220 M | 2.8 × 10⁴             | 84         |  |
|                 | ttH   | 760 M | 29 × 104              | 420        |  |
|                 | gg→HH | 28 M  |                       | 280        |  |

- Sub-% measurement of H to  $41/\gamma\gamma$ ?
- 1% measurement of H to  $\mu\mu$
- 5% measurement of 3-H coupling?
- Sensitive to 4-H coupling?

Mangano @ Hong Kong

## What H Physics can FCC-hh do?

• One thing is to have a large  $\sigma$ 

900 FCC PDF4LHC15 800 P P -> H+X  $\mu_f = \mu_f \in [m_b/4, m_b]$ 700 m<sub>h</sub>=125 GeV 600 1.0 - NLO - NNLO - N3LO σ [pb] 500 400 300 200 100 Studies in progress 70 60 10 20 30 √S [GeV]

Mangano @ Hong Kong

• Another is to have small uncertainties

| $\delta_{ m PDF}$ | $\delta_{lpha_S}$ | $\delta_{ m scale}$  | $\delta_{	ext{PDF-theo}}$ | $\delta_{ m EW}$ | $\delta_{ m tbc}$ | $\delta_{\frac{1}{m_1}}$ |
|-------------------|-------------------|----------------------|---------------------------|------------------|-------------------|--------------------------|
| $\pm 2.5\%$       | $\pm 2.9\%$       | $^{+0.8\%}_{-1.9\%}$ | $\pm 2.5\%$               | $\pm 1\%$        | $\pm 0.8\%$       | $\pm 1\%$                |

## vleasurement of 3-H Coupling

| • The s                         | tory so far                                                                                                                                                                                                                                                                                                                      | Studies in progress                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                          |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| НН →<br>bЪγγ                    | Barr,Dolan,Englert,Lima,<br>Spannowsky<br>JHEP 1502 (2015) 016                                                                                                                                                                                                                                                                   | Contino, Azatov,<br>Panico, Son<br>arXiv:1502.0053                                                                                                                            | 9                 | He, Ren Yao<br>arXiv:1506.03302                                                                                                                                                                                                                                                                                          |
| FCC <sub>@100TeV</sub><br>3/ab  | 30~40%                                                                                                                                                                                                                                                                                                                           | 30%                                                                                                                                                                           |                   | 15%                                                                                                                                                                                                                                                                                                                      |
| FCC <sub>@100TeV</sub><br>30/ab | 10%                                                                                                                                                                                                                                                                                                                              | 10%                                                                                                                                                                           | (                 | 5%                                                                                                                                                                                                                                                                                                                       |
| $S/\sqrt{B}$                    | 8.4                                                                                                                                                                                                                                                                                                                              | 15.2                                                                                                                                                                          |                   | 16.5                                                                                                                                                                                                                                                                                                                     |
| Details                         | $ \begin{array}{l} \checkmark  \lambda_{HHH} \text{ modification only} \\ \checkmark  c \rightarrow b \ \& \ j \rightarrow \gamma \text{ included} \\ \checkmark  \text{Background systematics} \\ \circ  b \overline{b} \gamma \gamma \text{ not matched} \\ \checkmark  m_{\gamma\gamma} = 125 \pm 1 \text{ GeV} \end{array} $ | ✓ Full EFT approa<br>○ No $c \rightarrow b \& j \rightarrow d$<br>✓ Marginalized<br>✓ $b\bar{b}\gamma\gamma$ matched<br>✓ $m_{\gamma\gamma} = 125 \pm 5$<br>✓ Jet /Wheet veto | ch<br>→γ<br>5 GeV | $ \begin{array}{l} \checkmark  \lambda_{HHH} \text{ modification only} \\ \checkmark  c \rightarrow b \ \& \ j \rightarrow \gamma \text{ included} \\ \circ  \text{No marginalization} \\ \checkmark  b \overline{b} \gamma \gamma \text{ matched} \\ \checkmark  m_{\gamma\gamma} = 125 \pm 3 \text{ GeV} \end{array} $ |

• More decay modes, improved selections, .

## **FCC-ee** Sensitivity to 3h Coupling

• Loop corrections to  $\sigma(H+Z)$ :



#### A First Look at 4-H Coupling

#### HHH production and quartic coupling constraints

Papaefstathiou, Sakurai, arXiv: 1508.06524



Buchmueller, JE et al: arXiv:1505.04702

#### Precision FCC-ee Measurements

#### **Precision Electroweak**





**Precision Higgs** 

#### Measuring CMSSM with FCC-ee





#### Where May CMSSM be Hiding?





### Exploring the Stop Coannihilation Strip



- Compatible with LHC measurement of m<sub>h</sub>
- May extend to  $m_{\chi} = m_{stop} \sim 6500 \text{ GeV}$

JE, Olive & Zheng: arXiv:1404.5571

#### Impact of Precision and Higgs Measurements

 Contributions of Higgs and electroweak precision observables to global χ<sup>2</sup> function along stop coannihilation strip



FCC-ee vs FCC-hh: possible test of supersymmetry at the loop level Buchmueller, JE et al: arXiv:1505.04702

### Possible Future X Signal

- Assuming production by gluon-gluon fusion
- Normalized to  $\sigma B(\gamma \gamma) = 6$  fb

Djouadi, JE, Godbole, Quevillon, arXiv:1601.03696



• PDF, ren'n scale uncertainties @  $100 \text{ TeV} \sim 30\%$ 

#### Alternative Higgs Doublet Scenario

- After singlet, doublet?
- Heavy Higgses in 2 Higgs doublet model:  $\Phi = H$ , A
- Nearly degenerate in many versions, e.g., SUSY
- Expect t tbar decays to dominate
- Can accommodate  $\Gamma_{\Phi} \sim 45$  GeV (ATLAS)
- Need larger enhancement of loops compared to singlet model
- Rich bosonic phenomenology

Djouadi, JE, Godbole, Quevillon, arXiv:1601.03696

## Lineshape in pp Collisions

0.1• +MSSM:  $\tan \beta = 1$  $d\sigma/dM_{\gamma\gamma}$ [fb/GeV] 0.08H+A•  $M_H - M_A \sim 15 \text{ GeV}$  $M_A = 750 \text{ GeV}$ •  $\Gamma_{\rm H}, \Gamma_{\rm A} \sim 32, 35 \; {\rm GeV}$  $M_{\rm H} = 765 \ {\rm GeV}$ 0.06•  $\sigma B(A \rightarrow \gamma \gamma) =$ А 0.04 $2 \times \sigma B(H \rightarrow \gamma \gamma)$ • Asymmetric 0.02'Breit-Wigner' 0 **Resolvable?** 600 650750700 $M_{\gamma\gamma}$  [GeV]

800

850

Diouadi, JE. Godbole, Ouevillon, arXiv:1601.03696





Djouadi, JE, Godbole, Quevillon, arXiv:1601.03696



• Present lower mass limit ~ 800 GeV



## Indirect Sensitivity of FCC-ee?

- To mixing between H(125) and X(750)?
- To vector-like fermions via electroweak precision and Higgs measurements?
- To other indirect effects in two-Higgs doublet models?
- Other models?
- Should we wait and see?

# Global Analysis, Combination & Complementarity

- Will depend upon inputs from both FCC-ee and FCC-hh (and FCC-he)
- Core business: probes of any new physics at the quantum level
  - E.g., Higgs, supersymmetry, X(750) (?)
- Effort needed from both sides:
  - Accuracy of possible FCC-hh measurements?
  - FCC-ee sensitivity to new physics  $\neq$  H, SUSY
- If X(750) exists, it will change everything!

## Back-ups



#### Indirect Stop Limits from Precision EW Data





Drozd, JE, Quevillon & You: arXiv:1504.02409

#### Possible FCC-ee Precision Measurements

#### Conservatively based on LEP experience so far – it is just a start. Much work ahead.

| Observable             | Measurement                                   | Current precision                          | TLEP stat. | Possible syst. | Challenge                        |
|------------------------|-----------------------------------------------|--------------------------------------------|------------|----------------|----------------------------------|
| m <sub>z</sub> (MeV)   | Lineshape                                     | 91187.5 ± 2.1                              | 0.005      | < 0.1          | QED corr.                        |
| Γ <sub>Z</sub> (MeV)   | Lineshape                                     | 2495.2 ± 2.3                               | 0.008      | < 0.1          | QED corr.                        |
| R <sub>I</sub>         | Peak                                          | 20.767 ± 0.025                             | 0.0001     | < 0.001        | Statistics                       |
| R <sub>b</sub>         | Peak                                          | 0.21629 ± 0.00066                          | 0.000003   | < 0.00006      | g → bb                           |
| N <sub>v</sub>         | Peak                                          | 2.984 ± 0.008                              | 0.00004    | < 0.004        | Lumi meast                       |
| α (m <sub>7</sub> )    | R <sub>I</sub>                                | 0.1190 ± 0.0025                            | 0.00001    | 0.0001         | New Physics                      |
| m <sub>w</sub> (MeV    | Threshold scan                                | 80385 <b>± 15</b>                          | 0.3        | < 0.5          | QED Corr.                        |
| N <sub>v</sub>         | Radiative returns<br>e⁺e⁻→γΖ, Ζ→νν, II        | 2.92 <b>± 0.05</b><br>2.984 <b>± 0.008</b> | 0.001      | < 0.001        | ?                                |
| α (m <sub>w</sub> )    | $B_{had} = (\Gamma_{had} / \Gamma_{tot})_{W}$ | B <sub>had</sub> = 67.41 ± 0.27            | 0.00018    | < 0.0001       | CKM Matrix                       |
| m <sub>top</sub> (MeV) | Threshold scan                                | 173200 ± 900                               | 10         | 10             | QCD (~40 MeV)                    |
| $\Gamma_{top}$ (MeV)   | Threshold scan                                | ?                                          | 12         | ?              | α <sub>s</sub> (m <sub>z</sub> ) |
| λ <sub>top</sub>       | Threshold scan                                | μ = 2.5 ± 1.05                             | 13%        | ?              | α <sub>s</sub> (m <sub>z</sub> ) |

**Reaches for Sparticles** e he





## Reach for the Stop



Discover 6.5 TeV stop @ 50, exclude 8 TeV @ 95%

Stop mass up to 6.5 TeV possible along coannihilation strip

#### Single Vector-Like Q, L Production

• Single production at LHC, future circular colliders



• Assuming mixing angle with light fermions  $\xi = 0.1$ 

#### How Heavy could Dark Matter be in pMSSM?

 Largest possible mass in pMSSM is along gluino coannihilation strip: m<sub>gluino</sub> ~ m<sub>neutralino</sub>





**Reaches for Sparticles** 

চ

**Discovery Reach** 

10

m<sub>a</sub> [TeV]

VS = 100 TeV, L dt = 3000 fb<sup>-1</sup>, No PileUp

.pp→ĝĝ→qąχ°aq

 $5 \sigma$  discovery

#### Model with compressed spectrum: small gluinoneutralino mass difference

ng - m<sub>2</sub> [TeV

18

1.6

14

0.8

0.6

0.4



