

Machine Induced Backgrounds at the FCC-ee

M. Boscolo (INFN-LNF)

H. Burkhardt (CERN) and N. Bacchetta (INFN-Pd & CERN)

10th FCC-ee Physics Workshop CERN, 4-5 February 2016

material: M.B. talk at FCC WEEK15 "Losses in IR Region" H.B. Oct 14th 2015 review "Interaction region Synchrotron Radiation"

Background design study general approach

- Simulation of beam background sources → primary losses
- Propagation -interactions and showers- of primary particle losses in and nearby the detectors
 - \rightarrow check for acceptable rates in all detectors
- If detector background budget not satisfactory, readjustments of
 - Shieldings, masks and collimators
 - beam parameters
 - IR design

Machine Detector Interface

Key issue:

- lost particle backgrounds
- Synchrotron radiation backgrounds
- SR heating of vacuum chambers
- radiation damage/lifetime of detectors
- sensor occupancy
- luminosity measurement

Two Main Classes:

- Beam particles e⁺, e⁻, e⁺e⁻ effects
 - Bhabha
 - Beamstrahlung
 - Beam-gas
 - Touschek
 - Thermal photons
- Synchrotron Radiation
- Both aspects deeply studied for present/past machines
- Beam particles effects (better) studied at Factories
- SR manageable extrapolation from LEP experience but FCC-ee is a very challenging machine, dedicated studies needed

Luminosity sources

- Beamstrahlung
- Bhabha (Radiative)
- 2-photon pair production e⁺e⁻ -> e⁺e⁻ e⁺e⁻ e⁺e⁻ -> e⁺e⁻ μ⁺μ⁻
- Beam-beam (Halo)

Linear with Currents

- Synchrotron radiation
- Beam-gas Coulomb/ Bremsstrahlung (at constant Pressure)

Other sources

- thermal outgassing due to HOM losses
- top-up injection background
- High order modes
- Compton thermal photons
- ion or electron cloud
- single / multiple Touschek scattering

Luminosity sources

- Beamstrahlung
- Bhabha (Radiative)
- 2-photon pair production e⁺e⁻ -> e⁺e⁻ e⁺e⁻ e⁺e⁻ -> e⁺e⁻ μ⁺μ⁻
- Beam-beam (Halo)

Linear with Currents

- Synchrotron radiation
- Beam-gas Coulomb/ Bremsstrahlung (at constant Pressure)

Other sources

- thermal outgassing due to HOM losses
- top-up injection background
- High order modes
- Compton thermal photons
- ion or electron cloud
- single / multiple Touschek scattering

Some cause backgrounds due to direct beam losses: particle tracking needed.

The impact of these effects is of course dependent on machine parameters (like beam energy, energy acceptance)

Luminosity sources

- Beamstrahlung
- Bhabha (Radiative)
- 2-photon pair production $e^+e^- \rightarrow e^+e^- e^+e^$ $e^+e^- \rightarrow e^+e^- \mu^+\mu^-$
- Beam-beam (Halo)

Linear with Currents

- Synchrotron radiation
- Beam-gas Coulomb/ Bremsstrahlung (at constant Pressure)

Other sources

- thermal outgassing due to HOM losses
- top-up injection background
- High order modes
- Compton thermal photons
- ion or electron cloud
- single / multiple Touschek scattering

Some cause backgrounds due to direct beam losses: particle tracking needed.

The impact of these effects is of course dependent on machine parameters (like beam energy, energy acceptance)

Dependence on Energy Acceptance

(FCC)

Energy dependent processes: scale law

P(Beamstrahlung)
$$\propto (\gamma) \frac{N^2}{\sigma_x \sigma_y}$$
P = Probability functionP(Bremstrahlung) $\propto \ln(\sqrt{s}) \cdot L \propto \ln(\sqrt{s}) \cdot \frac{N^2}{\sigma_x \sigma_y}$ $\forall s = c.m. energy$
 $L = Luminosity$ P(Touschek) $\propto (\frac{1}{\gamma^3}) \frac{N}{\sigma_x \sigma_y \sigma_z}$

scaling with the beam energy:

Beamstrahlung is the dominant effect at high energies;

it is strongly dependent on energy acceptance (see previous slide);

acceptance needed as high as possible

M. Boscolo, CERN, Feb 4 2016

Momentum Aperture of Touschek particles through the ring

(from physical aperture)

Not simply an s dependent momentum aperture: EXAMPLE

- Crucial for all sources inducing a $\delta E/E$ like Touschek, rad Bhabha, beamstrahlung (HE)
- Best determined with full tracking
- warning: present optics is much better (optics: TLEP_V14_IR_6-13-2)

FCC-ee Touschek Off-energy trajectories

(optics: TLEP_V14_IR_6-13-2)

Beam-gas scattering

- Mainly Coulomb and Bremsstrahlung interactions with residual gas molecules in the beam pipe
- As a start: the estimate based on LEP2 rates and rescale for beam currents
- For a more quantitative and accurate estimate the lattice description is needed

TOOLS:

- PLACET, HTGEN (Helmut)
- MCGAS Monte Carlo developed for SuperB and Italian τ -charm (Manuela)

Beam-gas Coulomb scattering

B-Factories

LER parameters	unit	КЕКВ	SuperKEKB	SuperB	LEP	FCC-ee (KO)
V beam pipe @QD0	mm	35	13.5	6		(175GeV)
$\beta_y(max)$ @QD0	m	600	2900	1497	150 m	5.236 km
Coulomb lifetime	hr/min	>10 hrs	35 min	24 min		

- Coulomb rate decreases quadratically with energy beneficial for FCC-ee
- Coulomb rate increases linearly with β_{ave} \implies worse for FCC-ee
- Losses happen vertically at β_y(max) (i.e. at QD0) larger by 1 order of magnitude with respect to SuperB
 Factories, at LEP there was no high beta close to the IP

worse for FCC-ee should be found a trade off for this value

Beam-gas Bremsstrahlung

- At LEP off-energy particle background was largely dominated by beam-gas Bremsstrahlung along the straight sections [τ_B= 430 hrs with P=10⁻¹⁰ Torr, NIM A 403 (1998) 205-246]
- From 45 GeV to 65 GeV dynamic pressure increased by a factor 5

- At FCC-ee Beam Losses needs to be studied with particle tracking
- General requirement: P < 1.E-9 Torr

Radiative Bhabha

- Large energy loss/angle => lost almost immediately, closeby detectors
 - almost independent on machine lattice but the Final Focus
 - BBBREM generator [R. Kleiss, H.Burkhardt](collinear), BABAYAGA, BHWIDE(low angle)
- **Small energy loss/angle** => may be lost after few machine turns
 - multi-turn tracking with a dedicated Monte Carlo simulation with BBBREM generator for the weights of the tracking particles
- Cross-section almost independent on sqrt(s)
- Lifetime depends essentially on energy acceptance at IP and on Luminosity
- Multi-turn particle losses best calculated by tracking

Beamstrahlung

- Beamstrahlung is synchrotron radiation in the field of the opposing beam
 - energetic photons are emitted -> produce background
 - \rightarrow –(Δ E/E) bunch particles get lost in
 - -> Backgrounds from debris
 - -> Luminosity drops
 - -> beam energy spread affected

Many analogies (dependence on energy acceptance at IP, direct losses) with Radiative Bhabha but Beamstrahlung is the dominant effect at FCC-ee high energy

quadrupole

dipole

10

Approach for FCC-ee SR : IR challenges

Challenge: maximize performance (integrated luminosity) for experiments for good or at least tolerable experimental (background, stability) conditions.

Some key points :

Minimize synchrotron radiation in the IR region =>

- Bends as weak as possible and as far as possible from IP
- Quads have to be strong and close to IP, Minimize offset from quad axis
 Careful with vertical halo/tails

γ-energy / Ecrit.

0.1

0.001

 10^{-5}

dn/dk

y spectrum

0.1

0.01

SR Monte Carlo : H.B. <u>CERN-OPEN-2007-018</u> integrated in G4

• For FCC the approach has been to start developing the software tools

Spectrum and absorption

very difficult above 100 keV

Typical mean (0.3 E_c) photon energies

B-factories (and **FCC-hh**) mostly below 10 keV

LEP1: 21 keV **LEP2**: 320 keV (arc, last bend 10× lower)

TLEP : ~ 350 keV (arc, 175 GeV) -> very similar to LEP2 difficult to collimate

Enormous photon flux, MWs of power can get kW locally, melt equipment, detectors..

Aim as for LEP2 :

do not generate hard synchrotron radiation anywhere close to the IR

[Helmut Burkhardt]

Stimulated by the request of Katsunobu Oide to provide simple criteria to make synchrotron radiation effects tolerable :

My proposal, based on LEP2 : 1. Ecr < 100 keV within 250 m of IP. Weak dipoles in IR LEP2 72 keV at 260 m from IP 2. Ecr < 1 MeV in ring, to avoid n-production

LEP2 0.72 MeV

Should be considered as guidelines, neither guarantee nor hard limit. Possible to compromise : 1. Ecr < 100 keV important for SR directed to IP, outgoing beam could be higher 2. Ecr > 1 MeV ---> consequences of neutron production to be evaluated in detail

Turned out to be possible to design an optics including crab waist with these criteria : from 31/08/2015 /afs/cern.ch/eng/fcc/ee/Oide/Lattices/FCCee t 45 16 cw nosol.seq

Look at these optics using our generic MDISim tools, guided by LEP2 --->

[Helmut Burkhardt]

KO lattice FCCee_t_45_16_cw

1. step : MAD-X twiss and survey

FCCee_t_45_16_cw_nosol.seq is complete ring, but only single beam make 2nd beam and introduce crossing on survey level

beam, particle = positron, npart=2.3e11, kbunch=60, energy = 175, radiate=false; twiss, chrom, file="fcc_ee_t_45_16_cw_nosol_b1_twiss.tfs"; survey, theta0 = +0.015, file="fcc_ee_t_45_16_cw_nosol_b1_survey.tfs";

M. Boscolo, CERN, Feb 4 2016

[Helmut Burkhardt]₁₀

Based MAD-X tfs files

Eb=175 GeV L = 99938 m RFHV= 9.6 GV Harm=133343 Qs=0.0818654 frev = 2.99978 kHz fRF= 400 MHz ibeam=6.63253 mA SR Power / beam =47.1606 MW

Bend	radiation	incomi	ng									
iele	NAME	S	\mathbf{L}	Angle	Ecrit	ngamBend	rho	В	BETX	SIGX	divx	Power frac>10MeV
		m	m		keV		m	Т	m	mm	mrad	kW
12	BWL.2	91.89	49.56	-0.0004168	100	1.504	118886.3	-0.0049	1323.550	1.5582	0.0140	0.3071 8.927e-46
16	BC1L.2	194.5	98.99	-0.0008327	100	3.004	118886.3	-0.0049	376.0960	0.8306	0.0076	0.6134 8.927e-46
29	BC3L.4	526.4	51.41	-0.001794	414.9	6.472	28651.0	-0.0204	54.1165	0.3151	0.0072	5.485 1.681e-12
33	BC3L.3	581.4	51.41	-0.001794	414.9	6.472	28651.0	-0.0204	203.3444	0.6108	0.0072	5.485 1.681e-12
52	BL.2	914.4	34.41	0.002923	1010	10.54	11771.7	0.0496	18.4651	0.1840	0.0105	21.75 3.874e-06
63	B1.1264	980.2	28.62	0.00246	1022	8.875	11633.3	0.0502	20.1072	0.1921	0.0108	18.52 4.379e-06
67	B1.1263	1012	28.62	0.00246	1022	8.875	11633.3	0.0502	99.4930	0.4272	0.0108	18.52 4.379e-06

PowSum=47.1606 MW first 250m PowSum250 = 920.491 W

Out	aoina
	55

	-										
14	BC1.1	71.39	46.57	0.003134	800	11.3	14860.8	0.0393 54.6903	0.3167	0.0084	18.47 2.56e-07
27	BC3.1	211.7	28.81	0.003169	1308	11.43	9091.2	0.0642 17.8242	0.1808	0.0113	30.53 4.212e-05
31	BC3.2	244.1	28.81	0.003169	1308	11.43	9091.2	0.0642 104.6386	0.4381	0.0113	30.53 4.212e-05
50	BS.1	481.8	31.4	0.003155	1195	11.38	9951.7	0.0587 20.3199	0.1931	0.0104	27.77 1.951e-05
60	BG1.1	559	33.23	0.002495	892.5	8.999	13320.1	0.0438 22.7827	0.2044	0.0101	16.4 9.89e-07
64	BG1.2	594.9	33.23	0.002495	892.5	8.999	13320.1	0.0438 115.2035	0.4597	0.0101	16.4 9.89e-07
firs	st 250m	PowSum2	50=79.52	272 kW							

red color: critical energy over 100 keV, Power > 1kW and within 250 m of IP, here only on outgoing beam

Quads, at 1 sigmax, horizontal, incoming beam

iele	Element	s	\mathbf{L}	betx	sigx	divx	K1L	k0	х	Angle	Ecrit	ngam	Power
		m	m	m	mm	mrad	m-2	m-1	mm		keV		kW
3	QC1L1.2	3.8	1.6	20.9	0.1957	0.009375	-0.2665	5.215e-05	1.849e-25	8.344e-05	620	0.301	0.3811
4	QC1L2.2	5.4	1.6	77	0.3759	0.00488	-0.2665	0.0001002	3.157e-25	0.0001603	1191	0.5782	1.406
6	QC2L1.2	6.95	1.25	180	0.5743	0.003194	0.1318	7.569e-05	4.643e-25	9.461e-05	899.8	0.3413	0.6271
7	QC2L2.2	8.2	1.25	219	0.6335	0.002896	0.1318	8.348e-05	5.024e-25	0.0001043	992.4	0.3764	0.7629
10	QC3L.2	42	3	406	0.8634	0.002125	-0.008585	7.412e-06	4.331e-25	2.224e-05	88.12	0.08021	0.01444
14	QC4L.2	95.2	3 1	L.35e+03	1.572	0.001167	0.01369	2.152e-05	-1.059e-18	6.456e-05	255.9	0.2329	0.1217
18	QC5L.2	198	3	370	0.8236	0.002227	-0.01383	1.139e-05	-7.785e-18	3.418e-05	135.5	0.1233	0.03411
20	QC6L.2	293	3	798	1.21	0.001516	0.01137	1.375e-05	-2.684e-17	4.126e-05	163.5	0.1488	0.0497
22	QC7L.2	415	3	21.8	0.1999	0.009175	-0.0177	3.539e-06	-1.509e-17	1.062e-05	42.08	0.0383 0	.003292
27	QY2L.4	475	3	205	0.6127	0.002994	0.02518	1.543e-05	-2.407e-17	4.628e-05	183.4	0.167	0.06254

AB lattice FCC_arc_17_IR_8, SR

Based on /afs/cern.ch/eng/fcc/ee/FCC_arc_17_IR_8/FCC.seq by Anton Bogomyagkov et al. from 25/09/2015

Single beam, symmetric ring, not completely closed, but sufficient for a first look at SR levels.

Eb=175 GeV l = 101268 m RFHV= 11 GV Harm=666666 ×2 frev = 2.96038 kHz fRF=197.357 MHz ×2 ibeam=6.26083 mA

iele	NAME	S	L	Angle	Ecrit ng	JamBend	rho	В	BETX	SIGX	divx	Power frac>10MeV
		m	m		keV		m	т	m	mm	mrad	kW
11	L2.MB0	39	30	-0.001	396.3	3.607	30000.0	-0.0195	222.1822	0.5440	0.0072	2.756 5.281e-13
13	L2.MB1	74	33	-0.0011	396.3	3.968	30000.0	-0.0195	77.0254	0.3203	0.0072	3.031 5.281e-13
23	L2.MB2	127.8	30	-0.0011	435.9	3.968	27272.7	-0.0214	24.9903	0.1825	0.0073	3.334 5.495e-12
29	L2.MB3	155.4	22	-0.00178	961.9	6.421	12359.6	-0.0472	53.9202	0.2680	0.0073	11.91 2.305e-06
39	L2.MB4	198.5	33	-0.00318	1146	11.47	10377.4	-0.0563	42.5753	0.2382	0.0071	25.33 1.335e-05
55	L2.MB5	242.5	37	-0.003019	970.2	10.89	12253.7	-0.0476	157.2048	0.4576	0.0071	20.37 2.531e-06
61	L2.MB6	285.6	37	-0.003056	982.1	11.03	12105.4	-0.0482	16.8422	0.1498	0.0095	20.87 2.885e-06
67	L2.MB7	325.6	37	-0.003056	982.1	11.03	12105.4	-0.0482	136.5402	0.4265	0.0095	20.87 2.885e-06
73	L2.MB8	368.6	37	-0.003019	970.2	10.89	12253.7	-0.0476	45.0495	0.2450	0.0071	20.37 2.531e-06
109	L2.MB12	508.6	30	-0.0023	911.5	8.296	13043.5	-0.0448	31.0986	0.2035	0.0072	14.58 1.261e-06
133	L2.MB15	628.1	30	0.00235	931.3	8.477	12766.0	0.0457	44.4201	0.2433	0.0076	15.22 1.611e-06
139	L2.MB16	661.4	30	0.00235	931.3	8.477	12766.0	0.0457	25.9592	0.1860	0.0076	15.22 1.611e-06
159	L2.MB17	736.7	20	0.001456	865.5	5.252	13736.4	0.0425	10.3423	0.1174	0.0133	8.763 6.86e-07
165	L2.MB18	767.8	20	0.001456	865.5	5.252	13736.4	0.0425	138.9058	0.4302	0.0151	8.763 6.86e-07
211	MBDS2	1029	10	0.0005865	697.2	2.115	17051.0	0.0342	38.9571	0.2278	0.0090	2.844 3.781e-08

PowSum=50.0496 MW first 250m PowSum250= 66.734 kW

AB lattice FCC_arc_17_IR_8, SR

Too much SR from FCC_arc_17_IR_8 optics to IR

Conclusions

- We need to check all beam loss effects, but priority is given to:
 - Bhabha (radiative)
 - Beamstrahlung
- First FCC-ee Touschek Losses simulation done, need progress with:
 - Multi-turn
 - Check at all energies (especially at the Z)
 - Keep-up with Lattice and parameters updates
- Beam-gas Losses similar studies to be done
- Benchmarking with e+e- machines (SuperKEKB, DAFNE)
- Top-up injection losses
- Muon backgrounds

Conclusions

- The design of the IR is a critical issue for the success of a collider
- Careful trade-off machine / detector constraints

detector constraints:

- Physics acceptance from the nominal beam axis
- Smallest possible beam pipe radius
- Thinnest possible beam pipe wall
- Solenoidal detector
- Separation scheme
- L* key parameter
- In this frame simulations of all the effects that induce machine backgrounds –as realistic as possible- are essential

Back-up

M. Boscolo, CERN, Feb 4 2016

Evaluation of Touschek Effect

- **1.** Touschek lifetime: usually evaluated by the formula, that is dependent on the momentum acceptance, so either
 - Give the machine momentum acceptance as input, and calculate the formula of the Touschek lifetime averaging on the whole lattice (rough evaluation)
 - Calculate the local momentum acceptance through the lattice elements and calculate the formula for each small section of the lattice and then sum up (more precise evaluation)

Probability Loss is a step function when machine momentum acceptance is given as an input (resulting from Dynamic Aperture calculation)

> Touschek Probability Loss function resulting from particle tracking (consistent, slightly worse, resulting about 0.6-0.8%)

The importance of this approach is more important if the distribution vs $\Delta E/E$ is very nonlinear (as for Touschek)

Evaluation of Touschek Effect

- **1.** Touschek lifetime: usually evaluated by the formula, that is dependent on the momentum acceptance, so either
 - Give the machine momentum acceptance as input, and calculate the formula of the Touschek lifetime averaging on the whole lattice (rough evaluation)
 - Calculate the local momentum acceptance through the lattice elements and calculate the formula for each small section of the lattice and then sum up (more precise evaluation)

2. Touschek Beam Losses: particle tracking needed along the ring

- Macro-particles are tracked through each small slice of elements for many turns (slicing needed for a correct estimate of the Touschek scattering rate to take into account changes of beam density and for proper tracking)
- Non-linear kicks included in the tracking.
- From the total particle losses it is possible to derive the lifetime lifetime (s) = N(beam) / Rate Beam Losses (s)

 \Rightarrow (approach used for DA Φ NE, SuperB, Italian Tau/C) [Ref. PRST-AB 15 104201 (2012)]

Touschek Tracking code Monte Carlo: some details

- Lattice imported from MAD-X
- A randomly chosen set of macro-particles are launched out of a Gaussian bunch for each small segment of the ring -small enough not to have meaningful Twiss functions changes- and tracked trough the ring for few machine turns or until they are lost.
- These macro-particles are off-energy, as have undergone Touschek scattering, each one has weight proportional to the energy spectrum of the Touschek effect (very nonlinear and lattice dependent)
- once per turn the macroparticle's energy deviation is compared to rf acceptance.
 - Disadvantage: loss location due to rf acceptance exceed not determined
 - Advantage: 4-D tracking in the transverse dimensions for smaller machine turns
- Will interface output with ROOT (plotting and primaries handling)

Perspectives for Software Development

 Presently the Monte Carlo reads MAD-X output (tfs file), produce the input for the MC, that recalculates optics matrices needed both for tracking and twiss functions

We foresee:

- Tracking directly using MAD-X matrices->
- Touschek routine in ROOT or interfaced with ROOT –
- ROOT as a graphical interface similarly to MDISIM
- BBBrem + MC Tracking
- other effects (Beamstrahlung)

Synchrotron Radiation

$$\begin{split} E_c &= \frac{3}{2} \frac{\hbar c \, \gamma^3}{\rho} = 2.96 \times 10^{-7} \text{eV m} \, \frac{\gamma^3}{\rho} \\ &\langle E_\gamma \rangle = \frac{8}{15\sqrt{3}} \, E_c \approx 0.308 \, E_c \\ U_0 &= \frac{e^2}{3\epsilon_0} \frac{\gamma^4}{\rho} \approx 6.0317 \cdot 10^{-9} \, \text{eV m} \quad \frac{\gamma^4}{\rho} \\ &P_b = \frac{U_0 \, I_b}{e} \end{split}$$

mean free path length $\boldsymbol{\lambda}$ between radiation

 $\lambda = \frac{\lambda_B}{B_{\perp}}$ where $\lambda_B = \frac{2\sqrt{3}}{5} \frac{mc}{\alpha e} = 0.16183 \,\mathrm{Tm}$ LEP2, TLEP, B \simeq O (0.1 T) O (1 m)

SynRad cone distribution mostly from bending angle O(mrad)

+ minor contribution from beam divergence O(10 μrad) and SynRad process

angular distribution (at E_c) ~ 1/ γ = 3 µrad @ TLEP

[Helmut Burkhardt]

guads, at i sigmax, norizontar

iele	Element	S	L	betx	sigx	divx	K1L	k0	х	Angle	Ecrit	ngam	Power
		m	m	m	mm	mrad	m-2	m-1	mm		keV		kW
2	QS0.R2	5.7	2	27.8	1.115	0.04003	-0.327	0.0003474	-0.0524	0.0006948	770.7	1.432	0.9798
10	QS1B.R2	11.2	2	226	3.176	0.01405	0.06314	0.0001918	-0.1377	0.0003836	425.5	0.7907	0.2987
12	QS1A.R2	13.7	2	278	3.523	0.01267	0.06314	0.0002129	-0.1509	0.0004259	472.4	0.8778	0.3681
20	QS2.R2	18	1.6	276	3.507	0.01272	0.01788	6.006e-05	-0.1471	9.61e-05	133.2	0.1981	0.023423
36	QS3.R2	59	2	39.4	1.326	0.03366	0.01879	2.45e-05	-0.02171	4.9e-05	54.35	0.101	0.004873

KO lattice FCCee_t_45_16_cw

2. step : Generate Geometry, ROOT with EVE and OpenGL, 3d display

MyNtuple2Geom -acsV -- fcc_ee_t_45_16_cw_nosol IP -zmin zmax scalefac=100 icolb1=600 fcc ee t 45 16 cw nosol b1 twiss.tfs + b1 survey.tfs icolb2=632 fcc ee t 45 16 cw nosol b2 twiss.tfs + b2 survey.tfs

no apertures specified, use default apertures, RF = 6 cm, bend r = 5 cm, quad r = 4 cm, sext r = 3 cm to make geometry visible

M. Boscolo, CERN, Feb 4 2016

[Helmut Burkhardt]