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Outline: 

1, brief introduction to topological insulator, more generally symmetry 
protected topological states, and connection to gauge anomalies at the 
boundary; 

Stable 2+1d CFT at the Boundary of a Class of 3+1d Symmetry Protected 
Topological States 

2, numerical evidence for the existence of the novel stable CFT in 
2+1d; 

3, an attempt of a controlled analytical RG calculation for the stable 
CFT. 

4, possible connection to high energy physics 



Topological Insulator: 

d-dimensional bulk: massive Dirac/Majorana fermion;  
(d-1)-dimensional boundary: gapless Dirac/Weyl/Majorana fermions, 
gapless spectrum protected by symmetry, i.e. Symmetry forbids 
fermion mass term. 

d-dimensional 

(d-1)-dimensional 

Mirror sector 

(d-1)-dimensional boundary cannot exist as a (d-1)-dimensional 
system without the bulk. i.e. Once symmetries are gauged, will have 
gauge anomaly. Full classification of noninteracting topological 
insulator: (Ryu, et.al., Kitaev, 2009) 

“Oversimplified” Introduction to TI/SPT states: 



The boundary of TI without any symmetry must have gravitational 
anomaly. 

Example: topological superconductor with no symmetry at all 

Classification (Ryu, et.al., Kitaev, 2009) 

Gravitational Anomaly of single Majorana fermion (Alvarez-
Gaume, Witten, 1983) 

P P G G P 

Topological insulator and anomalies at the boundary 

“Oversimplified” Introduction to TI/SPT states: 



The boundary of TI with unitary symmetry G will have gauge 
anomaly once G is “gauged”. 

Example: topological insulator with U(1) symmetry 

Classification (Ryu, et.al., Kitaev, 2009) 

U(1) gauge anomaly at the boundary: 

P P P P P 

Topological insulator and anomalies at the boundary 

“Oversimplified” Introduction to TI/SPT states: 



Example: topological superconductor with SU(2) symmetry 

Classification (Ryu, et.al., Kitaev, 2009) 

SU(2) gauge anomaly at the boundary: 

P P P G G 

The boundary of TI with unitary symmetry G will have gauge 
anomaly once G is “gauged”. 

Topological insulator and anomalies at the boundary 

“Oversimplified” Introduction to TI/SPT states: 



Free fermion TI: Full classification: S. Ryu, et.al. 2009, A. Kitaev 
2009; 
Phase transition between free fermion SPT states: 
Gapless Dirac/Majorana fermion in the d-dimensional bulk. Simplest 
example is the IQH plateau transition, described by a single 2+1d 
Dirac fermion, with mass m tuned to zero: 

Interacting TIs: 
Interaction can reduce the classification of fermion SPTs,  
1d: Z reduce to Z8, Fidkowski, Kitaev, 2009 
2d: Z reduce to Z8, Qi, 2012, Ryu, 2012…… 
3d: Z reduce to Z16, He3B, Xie Chen et.al. and… 

“Oversimplified” Introduction to TI/SPT states: 



Symmetry Protected Topological States: Generalization of TI and 
TSC, i.e. the bulk is gapped and nondegenerate, with gapless 
boundary. Bosonic SPT states: 
There is no free boson version; always strongly interacting;  
simplest example; 1d Haldane phase of spin-1 chain: 

Field theory description: O(3) NLSM + Θ-term, for π2[S2] = Z. 
Haldane 1988, Ng 1994, Coleman 1976.  

Θ = 2π 

Θ = 2π and Θ = 0 have the same bulk spectrum, but fundamentally 
different wave function, and different edge spectrum. 

“Oversimplified” Introduction to TI/SPT states: 



Bosonic SPT states: 
Higher dimensional bosonic SPT states, much more complicated, can 
be classified mathematically: Chen, Gu, Liu, Wen 2011 

“Oversimplified” Introduction to TI/SPT states: 

Symmetry Protected Topological States: Generalization of TI and 
TSC, i.e. the bulk is gapped and nondegenerate, with gapless 
boundary. 

can also be classified through more “physical” approaches, for 
instance Chern-Simons theory for 2+1d (Lu, Vishwanath, 2012) 

Or, nonlinear sigma model for 2+1d and 3+1d (Vishwanath, Senthil 
2012, Xu 2012, Xu, Senthil 2013……)  



“Oversimplified” Introduction to TI/SPT states: 

1+1d edge of 2+1d bosonic SPT state: 

With full SO(4) symmetry, it is well-known that this theory is a CFT, 
i.e. g flows to a stable fixed point under RG.  

g=0	 g=Infity	

When the SO(4) symmetry is reduced to its discrete subgroup, this 
theory could have spontaneous symmetry in its ground state. Both 
scenarios are consistent with the definition of SPT state. 



“Oversimplified” Introduction to TI/SPT states: 

2+1d edge of 3+1d bosonic SPT state: 

Possible ground states of this theory: 

1, ordered phase which spontaneously breaks the global symmetry, 
happens with weak coupling g; 

2, with strong coupling g, the system is in a quantum disordered phase, 
but this disordered phase has topological order and topological 
degeneracy;  

3, the quantum disordered phase with strong coupling g, is a stable 
2+1d CFT, at least this is allowed by the definition of SPT state.  



RG flow of the coupling constant g with the WZW term 

It is much harder to perform a reliable RG calculation for 2+1d, 
because usual controlled expansion method (2+ε and 1/N expansion) 
both fail here. For example, a O(N) vector has no topological term in 
2+1d for large-N. And a topological term is difficult, if not impossible, 
to generalize to fractional dimensions. 

g=0	 g=Infity	

2+1d edge of 3+1d bosonic SPT state: 

3, the quantum disordered phase with strong coupling g, is a stable 
2+1d CFT, at least this is allowed by the definition of SPT state.  
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Evidences for the existence of this stable CFT 

The 2+1d O(5) NLSM with a topological Wess-Zumino-Witten term 
can reduce to a 2+1d O(4) NLSM with a Θ-term with Θ=π: 

Choose n5 = 0 (break the SO(5) to SO(4) x Z2), this field theory 
reduces to 

This model can be generated by integrating out massive Dirac fermions 
in 2+1d (Abanov, Wiegmann, 2000). Thus we can simulate this model 
using 2d lattice fermion. But Θ is a tuning parameter in this 2d lattice 
model, rather than being fixed at π by symmetry.  
(situation similar to 3+1d chiral fermion: with a compact U(1) global 
symmetry, a famous no-go theorem guarantees that chiral fermions do 
not exist on lattice model, but without the compact U(1) symmetry, 
chiral fermion can emerge on lattice) 



This model has an exact O(4) symmetry = spin x layer rotation. 
We fix t, λ. Treating J as a tuning parameter. 
Some simple limits of this model: 
(1) J=0: bilayer quantum spin Hall, boundary c=2 CFT; 
(2) Weak J: fermion modes gapped at the boundary, boson modes 
gapless at boundary. Bosonization proves that boundary is described by 
1+1d O(4) NLSM with a WZW term at level-1. Which implies that the 
bulk corresponds to a 2+1d O(4) NLSM with Θ~2π. 
(3) Strong J: trivial Mott insulator, effective Θ=0. 

Sign problem free lattice model to simulate 2+1d O(4) NLSM with a Θ-term 



So in this lattice model, tuning J is like tuning Θ in the O(4) NLSM 
field theory. 

Sign problem free lattice model to simulate 2+1d O(4) NLSM with a Θ-term 

g=0	 g=Infity	

Θ=2π, J ~ 0+	

Θ=0, J  >> t	



Tuning J in the lattice model is 
equivalent to tuning Θ in the field 
theory. Determinant QMC (arXiv:
1508.06389) shows that the 
fermion gap is always finite while 
increasing J, but bosonic modes, 
the vector n, becomes gapless at 
the SPT-trivial Quantum critical 
point. 
 
This supports the conclusion that 
the disordered phase of the 2+1d 
O(4) NLSM with Θ=π is a CFT. 

Θ=2π	 Θ=π	 Θ=0	

Sign problem free lattice model to simulate 2+1d O(4) NLSM with a Θ-term 
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We need to design a special large-N generalization of this theory with 
a WZW term for arbitrary N: 

The target manifold is                         , which has a topological 
WZW term in 2+1d for arbitrarily large N.  
For n > 1 and N - n > 1, 
M is an n x (N-n) dimensional manifold. 

RG flow of the coupling constant g with the WZW term 

The original theory can be viewed as N=2n=4 after weakly breaking 
part of the global symmetry, because  



RG flow of the coupling constant g with the WZW term 

Step 1: Choosing a convenient parametrization, which can make the 
WZW term a “local term” in 2+1d: 

The complex vectors φα now have a 
U(n) gauge freedom: 



RG flow of the coupling constant g with the WZW term 

Now the WZW term becomes a “local term” in 2+1d, and it is a 
Chern-Simons term written formally in terms of gauge field a.  

When n=1, φ becomes the familiar CPN-1 fields. The WZW term can 
still be defined, because although the integral of f ˄ f is zero on S4, it is 
still quantized on T4. 

When n=1, N=2, φ becomes the familiar CP1 fields, and this WZW 
term reduces to the Hopf term, and it is a quantized integral in 2+1d, 
because π3[S2] = Z.  



Step 2: Solve the constraint on φα  and fix the gauge: 
Block decompose φα as follows: 

RG flow of the coupling constant g with the WZW term 

Choose a gauge, to make the n x n matrix Ф Hermitian, which removes 
all the continuous gauge degree of freedom, then the constraint on φα 
dictates that: 

ϕ is an n x (N-n) matrix, it has precisely the same number of degrees of 
freedom as the original order parameter P.  



Step 3: Now the entire action written in terms of ϕ is  

RG flow of the coupling constant g with the WZW term 



Step 4: RG flow without the WZW term, very simple beta functions in 
the large-N limit. 

RG flow of the coupling constant g with the WZW term 

The starting point of the RG flow 
has g	=	g’. Along this line, there is 
a quantum phase transition 
controlled by the fixed point 

g	

g’	



Step 5: RG flow with the WZW term.  

RG flow of the coupling constant g with the WZW term 

The one loop diagram on the right 
does not renormalize g or g’, thus 
the lowest order contribution to g 
and g’ are two-loop diagrams, for 
example the wave function 
renormalization: 



RG flow of the coupling constant g with the WZW term 



RG flow of the coupling constant g with the WZW term 

Unfortunately, this calculation is not 
reliable. To reliably identify a new fixed 
point in the disordered phase, we need to 
make sure that the system is still 
perturbative at the new fixed point. This 
implies that all terms in the beta functions 
should be comparable in the large-N limit. 
This means that k ~ N3/2. But then infinite 
diagrams will contribute at the same order: 



This infinite diagram problem only arises with the WZW term, this 
theory has a controlled large-N limit without the WZW term. 

RG flow of the coupling constant g with the WZW term 

Step 6: We need to find another (artificial) smaller parameter to 
control the calculation.  

Previous example: 1+1d Gross-Neveu model with a nonanalytic 
dispersion: Gawedski and Kupiainen, 1985 

A CFT at g ~ ε, which corresponds to a phase transition of 
spontaneous chiral symmetry breaking.   



Previous example: 2d Fermi surface coupled to a U(1) gauge field, 
need to sum up infinite diagrams in the large-N limit (S.S.Lee 2009) 
But, one can introduce a small parameter with nonanalytic dispersion 
(Nayak, Wilczek, 1994, Mross, McGreevy, Hong Liu, Senthil, 2010) 

RG flow of the coupling constant g with the WZW term 



These previous studies motivate us to make a nonanalytic 
generalization of the original NLSM to include another “small” 
parameter ε	through changing the scaling dimension of g. 

RG flow of the coupling constant g with the WZW term 

This generalization, especially the WZW term, had better satisfy the 
following criteria:	

1, under RG flow, no more relevant nonanalytic terms are generated, 
and all renormalization can be absorbed into finite number of coupling 
constants (can be proved in the large-N limit).	

2, the generalized WZW term keeps all the basics of the original WZW 
term, for example the parameter k (level) is always dimensionless.	



RG flow of the coupling constant g with the WZW term 

One generalized form of the NLSM, which satisfies these criteria: 



RG flow of the coupling constant g with the WZW term 

Beta function of this new theory, in the large-N limit and leading order  
in ε: 

Now we need to take           
 
 
to keep all the terms at the 
same order. And all the 
fixed points will be around  



RG flow of the coupling constant g with the WZW term 

Exponents: we take                             with small G.  

At the order-disorder transition: 

At the stable fixed point inside the disordered phase: 

When G is reduced, the fixed points can merge and annihilate each 
other. 



Possible connection to high energy physics: hierarchy problem 

My (naive) understanding: how to construct a theory that can give us 
stable (almost) massless (space-time) scalar bosons? 

Stable 2+1d CFT at the Boundary of a Class of 3+1d Symmetry Protected 
Topological States 

Possible route 1: little Higgs, (almost) massless scalar boson is a 
(pseudo-)Goldstone mode, associated with a spontaneous continuous 
symmetry breaking; 

New route: a topological WZW term can give us a stable CFT of scalar 
bosons, without any spontaneous symmetry breaking. 


