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Condensed Matter Quantum Information  Space-time?   

Motivation 

(Objects that look like) space-times seem to emerge from  
the entanglement structure of quantum many-body states 

? 

(and we were not thinking about gravity at all...)  

This talk: overview of some ideas along these lines 
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Entanglement  
obeys area-law 



Entanglement key resource in quantum information 
teleportation, quantum algorithms,  

quantum error correction, quantum cryptography… 
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For many ground states  

teleportation, quantum algorithms,  
quantum error correction, quantum cryptography… 

€ 

S(A) ~ LdGeneric  
state (volume) 

€ 

S(A) ~ Ld−1Ground states  
of (most) local Hamiltonians (area) 

Srednicki, Plenio, Eisert, Dreißig, Cramer, Wolf…  

In d dimensions 

Locality of interactions       area-law 



Many-body Hilbert space  
is far too large 



Hilbert space is a convenient illusion 



Hilbert space is a convenient illusion 

Set of area-law states 

Set of TN states (low-energy 
eigenstates of local Hamiltonians) 

Set of product states (mean field) 

Y. Ge, J. Eisert, arXiv:1411.2995 



Hilbert space is a convenient illusion 

O(101023

)“Exploration” time ~                     sec. 

O(1017 )Age of the universe ~                  sec.                        
Compare to… 

Most states here are not 
even reachable by a time 

evolution with a local 
Hamiltonian in polynomial 

time 

 
Poulin, Qarry, Somma, Verstraete, 

PRL 106 170501 (2011) 

We need a language to target the relevant 
corner of quantum states directly 

Set of area-law states 

Set of TN states (low-energy 
eigenstates of local Hamiltonians) 

Set of product states (mean field) 

Y. Ge, J. Eisert, arXiv:1411.2995 



Tensor Networks 



A new language 



DNA 
person 

A new language 



Ψ
tensor quantum state 

A new language 



Tensors are local building blocks for  
the quantum state (like a DNA, or LEGO) 

Ψ
tensor quantum state 

A new language 



Tensor network diagrams 
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f (A,B,C,D)tensor contraction 

vector    

€ 

 
v 
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Amatrix 
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ABmatrix product 
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tr(ABC)trace of matrix product 
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systems 

Tensor Networks 
e.g. RO,  Annals of Physics 349 (2014) 117–158 
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DMRG, PWFRG, TEBD… 

Projected Entangled Pair States (PEPS),   
Tensor Product States (TPS) 

Tensor Product Variational Approach, PEPS & iPEPS 
algorithms, Tensor-Entanglement Renormalization, 
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Matrix Product States (MPS) 

DMRG, PWFRG, TEBD… 

Projected Entangled Pair States (PEPS),   
Tensor Product States (TPS) 

Tensor Product Variational Approach, PEPS & iPEPS 
algorithms, Tensor-Entanglement Renormalization, 
TRG/SRG/HOTRG/HOSRG… 

RG 

Multiscale Entanglement  
Renormalization Ansatz (MERA) 

AdS/CFT, Entanglement Renormalization 

A ⋅B
A B

1d 

2d, 3d... 
Scale-invariant 

physical 1…p  bond 1..D (entanglement)   

Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians  



Comparison 

efficient 

1d Ham. 

inefficient efficient 

finite finite & infinite finite & infinite 

2d Ham. 1d Ham. 

arbitrary arbitrary constrained 

MPS in 1d 

PEPS in 2d 
MERA in 1d 

Ent. entropy 

Exact  

contraction 

Corr. length 

To/from 

Tensors 



Increasing complexity...  

MPS 

2d PEPS TTN 

1d MERA 
1d branching MERA 

Exact in many cases 
Variational ansatz for numerical simulations (e.g. DMRG)  



star operator 

plaquette operator 

€ 

i

Simplest known model with “topological order” 

Kitaev, 1997 

Ground state (and in fact all eigenstates) are PEPS with D=2 
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= = = = 1 

And another tensor rotated 90 ̊

Exact example 1: Kitaev’s Toric Code 
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Bogoliubov modes 

Dirac momentum modes 

Dirac real-space modes 

Bogoliubov transformation  

Fermionic Fourier  
transformation  

Majorana braidings  
+ Jordan-Wigner 

Spins on the honeycomb  
Vortex modes 

Exact example 2: Kitaev’s honeycomb model 
P. Schmoll, RO, arXiv:1605.04315 

A. Kitaev, Annals of Physics 321, 2-111 (2006) 

H =− Jx σ j
xσ k

x

x−links

∑ − Jy σ j
yσ k

y

y−links

∑

     − Jz σ j
zσ k

z

z−links

∑

Ax Ay 

Az 

B 

Abelian and non-abelian,  
chiral and non-chiral  
topological phases 
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Projected Entangled Pair States (PEPS) 
 

2d systems 

3d systems 



PEPS obey 2d area-law 



1..D 



in
1..D 





in



in
1..D 



in

prefactor size of the boundary 

1..D 



PEPS & Entanglement Hamiltonians 
e.g. I. Cirac et al, PRB 83, 245134 (2011), N. Schuch et al, PRL 111, 090501 (2013) 



1..D 







(double indices) 

1..D2 



(double indices) 



(double indices) 

Boundary 

How is physics described here?  

 

 



(double indices) 

1-dim transfer matrix: 

dominant eigenvector?  

Can be approximated 
using infinite MPS 

… … 

iTEBD, iDMRG, PWFRG, etc 

Boundary 

How is physics described here?  

 

 



… … Remember it has  

double indices… 

Emergent Hamiltonians 



It is also hermitian and  
positive by construction 
(up to finite-χ effects) 

… … 

Virtual indices of bra 

1…D 

Virtual indices of ket 
1…D 

Boundary virtual index 1...χ 

Emergent Hamiltonians 



It is also hermitian and  
positive by construction 
(up to finite-χ effects) 

ρ = exp(−HE )
1d Entanglement Hamiltonian 

Who is         ???  HE

… … 

Virtual indices of bra 

1…D 

Virtual indices of ket 
1…D 

Boundary virtual index 1...χ 

Emergent Hamiltonians 



It is also hermitian and  
positive by construction 
(up to finite-χ effects) 

ρ = exp(−HE ) Who is         ???  HE

 Critical 2d systems                                                           1d Hamiltonian, long-range        

   Gapped 2d systems, trivial phase                                   1d Hamiltonian, short-range          

Gapped 2d systems, topological order Completely non-local (projector) 

… … 

Virtual indices of bra 

1…D 

Virtual indices of ket 
1…D 

Boundary virtual index 1...χ 

Bulk Boundary Correspondence 

Particles and energies from Hamiltonians, and Hamiltonians from 
networks of entanglement + bulk-boundary correspondence 

1d Entanglement Hamiltonian 

Chiral topological order, gapless (1+1)d Conformal field theory 

Emergent Hamiltonians 

RO, M. Mambrini, D. Poilblanc, work in progress 
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Symmetric tensors and Schur’s lemma 
symmetric tensor 

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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Symmetric tensors and Schur’s lemma 
symmetric tensor 

degeneracy 

structural  
( ~ Clebsch-Gordan)  

degeneracy 

structural  
( ~ identity)  

2 legs 

3 legs 

Structural part depends only on the group properties (intertwiners)  

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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=∑
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}
Global)

Local))
(gauge))
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Emergent spin networks 

Global and gauge symmetries come out naturally 

Ψ =

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 
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States of quantum geometry  
in loop quantum gravity... 
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Emergent spin networks 

Global and gauge symmetries are handled naturally 

States of quantum geometry  
in loop quantum gravity... 

Ψ =

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) 



Outline 

3) Symmetric TNs and emergent spin networks 

4) MERA and emergent AdS/CFT 

2) PEPS and emergent Hamiltonians 

5) Summary & open questions 

1) Review of TNs 



Outline 

3) Symmetric TNs and emergent spin networks 

4) MERA and emergent AdS/CFT 

2) PEPS and emergent Hamiltonians 

5) Summary & open questions 

1) Review of TNs 



Multiscale Entanglement  
Renormalization Ansatz (MERA) 

2d systems 
1d systems 



1d MERA 

... ... 

1..χ 



1d MERA 

spatial dimension 

holographic 
 dimension 

(RG) ... ... 

1..χ 



Tensors obey constraints 
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Unitaries  
(disentanglers) 
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u

u+

Unitaries  
(disentanglers) 

= 
w

w+

Isommetries 
(coarse-grainings) 



Reason:  
 

entanglement is built locally  
at all length scales 



entangle locally 
L 
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Bulk degrees  
of freedom  



Entropy of 1d MERA 
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Entanglement as boundary in holographic geometry:  



Entanglement as boundary in holographic geometry:  



Entanglement as boundary in holographic geometry:  



Entanglement as boundary in holographic geometry:  



Constant contribution at every layer  

1d MERA can produce logarithmic violations to the area-law:  

(like 1d critical systems!) 

Entanglement as boundary in holographic geometry:  



MERA & AdS/CFT 
e.g. B. Swingle, PRD 86, 065007 (2012), G. Evenbly, G. Vidal, JSTAT 145:891-918 (2011) 



Picture from M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193 

MERA entropy ~ Ryu-Takayanagi prescription 

Emergent space-time 



Picture from G. Evenbly, G. Vidal, 
(2011) JSTAT 145:891-918  

(time slice)  



Bulk is a discretized  
AdS space 

Picture from G. Evenbly, G. Vidal, 
(2011) JSTAT 145:891-918  

(time slice)  



For a scale-invariant MERA, the tensors  
of a critical model with a CFT limit correspond to a  

„gravitational“ description in a discretized AdS space:  
„lattice“ realization of AdS/CFT correspondence 

Bulk is a discretized  
AdS space 

AdS2+1 

CFT1+1 

Picture from G. Evenbly, G. Vidal, 
(2011) JSTAT 145:891-918  

(and we were not thinking  
about gravity at all...)  

(time slice)  
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Let‘s now play 
some jazz... 

Finite correlation length (gapped systems) = finite number of layers  

Product state = 
trivial fixed point 

Same thermal spectrum (entanglement Hamiltonian)    
finite temperature, scale invariance broken  

If arbitrary, then 
we can have non-
trivial thermal 
states.  
 
If isommetry, then 
all information is 
encoded in the 
network of 
correlations and  
 
 



Let‘s now play 
some jazz... 

Finite correlation length (gapped systems) = finite number of layers  

Same thermal spectrum (entanglement Hamiltonian)    
finite temperature, scale invariance broken  

Toy model for a 
  

Black Hole: 
 

end of geometry 

Product state = 
trivial fixed point 

(time slice)  

If arbitrary, then 
we can have non-
trivial thermal 
states.  
 
If isommetry, then 
all information is 
encoded in the 
network of 
correlations and  
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MPO 

The thermofield double formalism is a trick to treat the thermal, mixed state ⇢ = e��H

as a pure state in a bigger system. First we double the degrees of freedom, i.e., we

consider a new QFT which is two copies of the original QFT. If the theory is defined

by a Lagrangian, then for every field � in the original QFT, there are two fields �
1

(x
1

)

and �
2

(x
2

) in the doubled QFT. These two fields live in di↵erent spacetimes x
1

and

x
2

, and are not coupled in the Lagrangian at all. The states of the doubled QFT are

|mi
1

|ni
2

. (17.3)

Now in this doubled system we consider the thermofield double state:

|TFDi = 1p
Z(�)

X
n

e��En/2|ni
1

|ni
2

. (17.4)

This is a particular pure state in the doubled system. The density matrix of the doubled

QFT in this state is

⇢total = |TFDihTFD| . (17.5)

The reduced density matrix of system 1 is

⇢
1

= tr
2

⇢total

=
X
m

2

hm|
 X

n,n0

e��En/2|ni
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|ni
2 2

hn0|
2

hn0|e��En0/2

!
|mi

2

=
X
n

e��En |ni
1 1

hn|

= e��H1 (17.6)

Therefore, if we restrict our attention to system 1, this pure state in the doubled system

is indistinguishable from a thermal state. For example, if O
1

is made of local operators

acting on system 1, O
1

= �
1

(x
1

)�
1

(y
1

) · · · , then

hTFD|O
1

|TFDi = 1

Z(�)
Tr H1 e

��H1O
1

. (17.7)

This procedure is called purifying the thermal state. In fact, any mixed state can be

purified by adding enough auxiliary states and tracing them out.

Although systems 1 and 2 are not coupled in the Lagrangian of the doubled system,
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and lower spacetimes  

ER=EPR, Maldacena & Susskind 

wormhole 

e.g., T. Hartman, J. Maldacena,  
JHEP05(2013)014 

M. Van Raamsdonk, arXiv:0907.2939 
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cMERA 

ψ = Pe
−i K (u)+L( )du

u 2

u1

∫
Ω

(continuum) 

K(u)
L

Disentangler generator 

Isommetry generator 

Measures the density of strength of disentanglers.  
Compatible with AdS metric 

J. Haegeman et al,  
Phys. Rev. Lett. 110, 100402 (2013) 

M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193 

curvature ~ change  
of entanglement at 
every length scale 
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Summary: “it from qubit” 
Many-body entanglement 

Tensor networks 

Entanglement Hamiltonians 

Entanglement spectrum  
(energy = eigenvalues) 

Quasiparticles 
(eigenvectors) 

Mass, statistics... 

Spin networks 

AdS/CFT 

Space-time 

+ bulk-boundary 

+ symmetries 

+ scale  
invariance 

(QM, non-relativistic) 

+ 

Lorentz invariance? 

+Lieb-Robinson 

...? (speculative)  

string theory 

loop-QG 

cond-mat 

Horava gravity 



Other developments 

•  Exact holographic mapping 

•  AdS/CFT as Quantum Error-Correcting Code 

•  Holographic Quantum Error Correcting Codes 

•  Einstein‘s equations from Entanglement Entropy 

•  ... 

X.-Liang Qi, arXiv:1309.6282 

A. Almheiri, X. Dong, D. Harlow, JHEP 1504:163 (2015)  

F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, JHEP 06 149 (2015) 
J. I. Latorre, G. Sierra, arXiv:1502.06618 

T. Faulkner, M. Guica, T. Hartman, R. C. Myers, M van Raamsdonk,  
JHEP 03 051 (2013); B. Swingle, M. van Raamsdonk, arXiv:1405.2933 



Some cross-over open questions  
•  cMERA, wavelets, and AdS/CFT?  

•  Superpositions of TTNs? Linear optics?  

•  Consistent AdS/TN? What about other correspondences?   

•  TN structure of, e.g., N=4 SYM? (Type-IIB on AdS5 x S5) 
      Can one derive string theory from entanglement?  

•  Non-classical gravity from „exotic“ TNs?  
      (topological order & D-branes, TNs with symmetries...)  

•  Holographic multipartite entanglement? Holographic mixed-state  
      entanglement?  

•  „Gravitational“ interpretation of branching MERA?  

•  Numerical simulations of gravity with TN methods?  

•  „entanglement renormalization“       „holographic renormalization“?  

•  Lorentz invariance from Lieb-Robinson bounds?  

•  ... 

C. Papadopoulos, RO  
work in progress 

D. Pang, RO, work in progress 

c.f. talk by  
J. Molina-Vilaplana 
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Thank you! 


