Overview:
 from (many) qubits to space-time

Román Orús
Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)

CERN, June 222016
c.f. talks by Latorre, Molina-Vilaplana, Pastawski, Wen, Maldacena

Motivation

Condensed Matter
Quantum Information

(Objects that look like) space-times seem to emerge from the entanglement structure of quantum many-body states
(and we were not thinking about gravity at all...)

This talk: overview of some ideas along these lines

Outline

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions

Outline

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions

Entanglement obeys area-law

Entanglement

key resource in quantum information

teleportation, quantum algorithms, quantum error correction, quantum cryptography...

Entanglement

2d system

key resource in quantum information teleportation, quantum algorithms, quantum error correction, quantum cryptography...

$$
\rho_{A}=\operatorname{tr}_{E}(|\Psi\rangle\langle\Psi|)
$$

$S(A)=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)$

Reduced density matrix of subsystem A

Entanglement entropy (von Neumann entropy)

For many ground states

$$
(L>\xi)
$$

Entanglement

2d system

$$
\begin{aligned}
\rho_{A} & =\operatorname{tr}_{E}(|\Psi\rangle\langle\Psi|) \\
S(A) & =-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right)
\end{aligned}
$$

Reduced density matrix of subsystem A

For many ground states

In d dimensions

key resource in quantum information teleportation, quantum algorithms, quantum error correction, quantum cryptography...

Entanglement entropy (von Neumann entropy)

$$
(L>\xi)
$$

Generic $\quad S(A) \sim L^{d}$ state (volume)
Ground states of (most) local Hamiltonians
$S(A) \sim L^{d-1}$

Srednicki, Plenio, Eisert, Dreißig, Cramer, Wolf..

Many-body Hilbert space is far too large

Hilbert space is a convenient illusion

Hilbert space of a N -body many-body system

Hilbert space is a convenient illusion

Hilbert space of a N -body many-body system

Set of area-law states
Y. Ge, J. Eisert, arXiv:1411.2995

Set of TN states (low-energy eigenstates of local Hamiltonians)

Set of product states (mean field)

Hilbert space is a convenient illusion

Hilbert space of a N -body many-body system
"Exploration" time $\sim O\left(10^{10^{23}}\right)$ sec.
Compare to...
Most states here are not Age of the universe $\sim O\left(10^{17}\right)$ sec. even reachable by a time evolution with a local Hamiltonian in polynomial time

Poulin, Qarry, Somma, Verstraete, PRL 106170501 (2011)

Set of area-law states
Y. Ge, J. Eisert, arXiv:1411.2995

Set of TN states (low-energy eigenstates of local Hamiltonians)

Set of product states (mean field)

We need a language to target the relevant corner of quantum states directly

Tensor Networks

A new language

$$
\left.|\Psi\rangle=\sum_{i, s} \Psi_{i, i_{2}, i_{\nu}}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

A new language

$$
\left.|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i i_{1}, \ldots, i_{V}}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

A new language

$$
\left.|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i i_{1}, \ldots, i_{\nu}}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

A new language

$$
\left.|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i_{1}, \ldots, i_{v}}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

Tensor network diagrams

vector \vec{v}
matrix A

matrix product $A B$

trace of matrix product $\operatorname{tr}(A B C)$
tensor contraction $\quad f(A, B, C, D)$

Tensor Networks
 $A \cdot B \rightarrow$<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: right; border-left: none !important; border-right: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">A</td>
<td style="text-align: right; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">B</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: right; border-left: none !important; border-right: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: right; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">-</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| A | B |
| ---: | ---: |
| | - |</table-markdown></div>
 e.g. RO, Annals of Physics 349 (2014) 117-158
 $$
|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle \quad \begin{aligned} & \text { p-level } \\ & \text { systems } \end{aligned}
$$

Tensor Networks

$A \cdot B \rightarrow \stackrel{A}{-}-\stackrel{B}{0}$

e.g. RO, Annals of Physics 349 (2014) 117-158

$$
|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle \begin{aligned}
& \begin{array}{l}
\text { p-level } \\
\text { systems }
\end{array}
\end{aligned}
$$

Tensor Networks

e.g. RO, Annals of Physics 349 (2014) 117-158

Matrix Product States (MPS)
 DMRG, PWFRG, TEBD...

Tensor Networks

e.g. RO, Annals of Physics 349 (2014) 117-158

$$
|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle \begin{aligned}
& \text { p-level } \\
& \text { systems }
\end{aligned}
$$

Tensor Networks

e.g. RO, Annals of Physics 349 (2014) 117-158

\section*{$A \cdot B \rightarrow$| A | B |
| ---: | ---: |
| | - |}

$|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle$| p-level |
| :--- |
| systems |

Matrix Product States (MPS)

DMRG, PWFRG, TEBD...
physical 1...p bond 1..D (entanglement)

Projected Entangled Pair States (PEPS), Tensor Product States (TPS)

Tensor Product Variational Approach, PEPS \& iPEPS algorithms, Tensor-Entanglement Renormalization, TRG/SRG/HOTRG/HOSRG...

Tensor Networks

e.g. RO, Annals of Physics 349 (2014) 117-158

\downarrow Scale-invariant
Multiscale Entanglement Renormalization Ansatz (MERA)

AdS/CFT, Entanglement Renormalization

$$
|\Psi\rangle=\sum_{i^{\prime} s} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle \begin{aligned}
& \text { p-level } \\
& \text { systems }
\end{aligned}
$$

physical 1...p bond 1..D (entanglement)

Projected Entangled Pair States (PEPS), Tensor Product States (TPS)

Tensor Product Variational Approach, PEPS \& iPEPS algorithms, Tensor-Entanglement Renormalization, TRG/SRG/HOTRG/HOSRG...

Efficient $\mathrm{O}($ poly (N)), satisfy area-law, low-energy eigenstates of local Hamiltonians

Comparison

MPS in 1d			
Ent. entropy	$S(L)=O(1)$	$S(L)=O(L)$	$S(L)=O(\log L)$
contraction	efficient	inefficient	efficient
Corr. length	finite	finite \& infinite	finite \& infinite
To/from	1d Ham.	2d Ham.	1d Ham.
Tensors	arbitrary	arbitrary	constrained

Exact in many cases
Variational ansatz for numerical simulations (e.g. DMRG)

Exact example 1: Kitaev’s Toric Code

$A_{s}=\prod_{i \in s} \sigma_{i}^{*} \quad$ star operator
$B_{p}=\prod_{i \in p} \sigma_{i}^{z} \quad$ plaquette operator

Simplest known model with "topological order"
Ground state (and in fact all eigenstates) are PEPS with $D=2$

And another tensor rotated 90°

Exact example 2: Kitaev’s honeycomb model jg|u
 Bogoliubov modes Bogoliubov transformation $\{$ Dirac momentum modes
 Dirac real-space modes
 Majorana braidings + Jordan-Wigner
 P. Schmoll, RO, arXiv:1605.04315
 $$
\begin{aligned} H= & -J_{x} \sum_{x-\text { links }} \sigma_{j}^{x} \sigma_{k}^{x}-J_{y} \sum_{y-\text { links }} \sigma_{j}^{y} \sigma_{k}^{y} \\ & -J_{z} \sum_{z-\text { links }} \sigma_{j}^{z} \sigma_{k}^{z} \end{aligned}
$$

 Abelian and non-abelian, chiral and non-chiral topological phases
 Vortex modes
 Spins on the honeycomb

Outline

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions
6) Review of TNs
7) PEPS and emergent Hamiltonians
8) Symmetric TNs and emergent spin networks
9) MERA and emergent AdS/CFT
10) Summary \& open questions

Projected Entangled Pair States (PEPS)

2d systems

3d systems

PEPS obey 2d area-law

$$
\begin{aligned}
& \left.\left.\rho_{\text {in }}=\operatorname{tr}_{\text {out }}(|\Psi\rangle\langle\Psi|)=\sum_{\bar{\alpha}, \overline{\alpha^{\prime}}} X_{\bar{\alpha}, \bar{\alpha}^{\prime}} \mid \text { in }(\bar{\alpha})\right\rangle\left\langle\text { in }\left(\bar{\alpha}^{\prime}\right)\right| \quad X_{\bar{\alpha}, \bar{\alpha}^{\prime}}=\left\langle\text { out }\left(\bar{\alpha}^{\prime}\right)\right| \text { out }(\bar{\alpha})\right\rangle \\
& \operatorname{rank}\left(\rho_{\text {in }}\right) \leq D^{4 L} \quad S(L)=-\operatorname{tr}\left(\rho_{\text {in }} \log \rho_{\text {in }}\right) \leq \log (D) 4 L
\end{aligned}
$$

$$
\begin{gathered}
\left.\rho_{\text {in }}=\operatorname{tr}_{\text {out }}(|\Psi\rangle\langle\Psi|)=\sum_{\bar{\alpha}, \bar{\alpha}^{\prime}} X_{\bar{\alpha}, \bar{\alpha}^{\prime}}|\operatorname{in}(\bar{\alpha})\rangle\left\langle\text { in }\left(\bar{\alpha}^{\prime}\right)\right| \quad X_{\bar{\alpha}, \bar{\alpha}^{\prime}}=\left\langle\text { out }\left(\bar{\alpha}^{\prime}\right)\right| \text { out }(\bar{\alpha})\right\rangle \\
\operatorname{rank}\left(\rho_{\text {in }}\right) \leq D^{4 L} \quad S(L)=-\operatorname{tr}\left(\rho_{\text {in }} \log \rho_{\text {in }}\right) \leq \log (D) 4 L \\
\text { prefactor size of the boundary }
\end{gathered}
$$

PEPS \& Entanglement Hamiltonians
 e.g. I. Cirac et al, PRB 83, 245134 (2011), N. Schuch et al, PRL 111, 090501 (2013)

$\langle\Psi \mid \Psi\rangle$

Boundary
How is physics described here?

Boundary
How is physics described here?

1-dim transfer matrix: dominant eigenvector?

Can be approximated using infinite MPS

iTEBD, iDMRG, PWFRG, etc

Emergent Hamiltonians

$\cdots p-p-p-p-\bar{p}$

Remember it has
double indices...

Emergent Hamiltonians

Virtual indices of bra Boundary virtual index $1 \ldots \chi$
$\begin{aligned} & 1 \ldots D \\ & \text { Virtual indices of ket } \\ & 1 \ldots D\end{aligned}$
It is also hermitian and
(up to finite- χ effects)

Emergent Hamiltonians

Virtual indices of bra Boundary virtual index 1... χ
1...D

Virtual indices of ket 1...D
 It is also hermitian and positive by construction (up to finite- χ effects)

1d Entanglement Hamiltonian
$\rho=\exp \left(-\hat{H}_{E}^{\prime}\right) \quad$ moss H_{s} m

Emergent Hamiltonians

Virtual indices of bra
1...D

Virtual indices of ket 1...D

Boundary virtual index 1... χ
It is also hermitian and positive by construction (up to finite- χ effects)

1d Entanglement Hamiltonian

Gapped 2d systems, trivial phase
Critical 2d systems
Gapped 2d systems, topological order
Chiral topological order, gapless
RO, M. Mambrini, D. Poilblanc, work in progress

1d Hamiltonian, short-range 1d Hamiltonian, long-range

Completely non-local (projector)
(1+1)d Conformal field theory

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions
6) Review of TNs
7) PEPS and emergent Hamiltonians
8) Symmetric TNs and emergent spin networks
9) MERA and emergent AdS/CFT
10) Summary \& open questions

Symmetric tensors and Schur's lemma

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Symmetric tensors and Schur's lemma
 e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Structural part depends only on the group properties (intertwiners)

Emergent spin networks

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Symmetric TN

Spin network

Emergent spin networks

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Symmetric TN

Coefficient

Spin network

States of quantum geometry in loop quantum gravity...

Emergent spin networks

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Global and gauge symmetries are handled naturally

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions
6) Review of TNs
7) PEPS and emergent Hamiltonians
8) Symmetric TNs and emergent spin networks
9) MERA and emergent AdS/CFT
10) Summary \& open questions

Multiscale Entanglement Renormalization Ansatz (MERA)

2d systems

1d MERA

1d MERA

spatial dimension

Tensors obey constraints

Reason:

entanglement is built locally at all length scales

L

日月

月
\sharp entangle locally

L/2

L/2

Extra dimension defines an RG flow: Entanglement Renormalization

Extra dimension defines an RG flow: Entanglement Renormalization

Entropy of 1d MERA

Entanglement as boundary in holographic geometry: $S(L) \leq \log (\chi)\left|\partial \Omega_{L}\right|$

Entanglement as boundary in holographic geometry: $S(L) \leq \log (\chi)\left|\partial \Omega_{L}\right|$

Entanglement as boundary in holographic geometry: $S(L) \leq \log (\chi)\left|\partial \Omega_{L}\right|$

Entanglement as boundary in holographic geometry: $S(L) \leq \log (\chi)\left|\partial \Omega_{L}\right|$

Entanglement as boundary in holographic geometry: $S(L) \leq \log (\chi)\left|\partial \Omega_{L}\right|$

Constant contribution at every layer 1d MERA can produce logarithmic violations to the area-law: $S(L) \approx \log L$
(like 1d critical systems!)

MERA \& AdS/CFT

e.g. B. Swingle, PRD 86, 065007 (2012), G. Evenbly, G. Vidal, JSTAT 145:891-918 (2011)

Emergent space-time

MERA

$$
S_{A} \propto \operatorname{Min}\left[\# \operatorname{Bonds}\left(\gamma_{A}\right)\right] \quad S_{A} \propto \operatorname{Min}[\text { Area }]
$$

AdS/CFT

Picture from M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193

MERA entropy ~ Ryu-Takayanagi prescription

Picture from G. Evenbly, G. Vidal, (2011) JSTAT 145:891-918

Picture from G. Evenbly, G. Vidal, (2011) JSTAT 145:891-918

Bulk is a discretized AdS space

Picture from G. Evenbly, G. Vidal, (2011) JSTAT 145:891-918
(and we were not thinking about gravity at all...)

CFT_{1+1}

For a scale-invariant MERA, the tensors of a critical model with a CFT limit correspond to a "gravitational" description in a discretized AdS space: „lattice" realization of AdS/CFT correspondence

Let's now play some jazz...

Let's now play some jazz...

Finite correlation length (gapped systems) $=$ finite number of layers

Finite correlation length (gapped systems) $=$ finite number of layers

Let's now play some jazz...

Product state = trivial fixed point

(time slice)
If arbitrary, then we can have nontrivial thermal states.

If isommetry, then all information is encoded in the network of correlations and

$$
\rho_{i n}=I
$$

Finite correlation length (gapped systems) $=$ finite number of layers

$$
\left.\begin{array}{l}
\rho_{\text {in }}=\operatorname{tr}_{\text {out }}(|\Psi\rangle\langle\Psi|) \\
\rho_{\text {out }}=\operatorname{tr}_{\text {in }}(|\Psi\rangle\langle\Psi|)
\end{array}\right\} \quad \begin{gathered}
\text { Same thermal spectrum (entanglement Hamiltonian) } \\
\text { finite temperature, scale invariance broken }
\end{gathered}
$$

Let's now play some jazz...

Product state $=$ trivial fixed point

(time slice)
If arbitrary, then we can have nontrivial thermal states.

If isommetry, then all information is encoded in the network of correlations and

$$
\rho_{i n}=I
$$

Finite correlation length (gapped systems) = finite number of layers

$$
\left.\begin{array}{l}
\rho_{\text {in }}=\operatorname{tr}_{\text {out }}(|\Psi\rangle\langle\Psi|) \\
\rho_{\text {out }}=\operatorname{tr}_{\text {in }}(|\Psi\rangle\langle\Psi|)
\end{array}\right\} \begin{gathered}
\text { Same thermal spectrum (entanglement Hamiltonian) } \\
\text { finite temperature, scale invariance broken }
\end{gathered}
$$

Thermofield double state
Eternal AdS black-hole
$|T F D\rangle=\frac{1}{\sqrt{Z(\beta)}} \sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{1}|n\rangle_{2}$

MPO
wormhole

CFT1

MERA

cMERA
(continuum)

$$
|\psi\rangle=P e^{-i \int_{u 2}^{u 1}(K(u)+L) d u}|\Omega\rangle
$$

J. Haegeman et al, Phys. Rev. Lett. 110, 100402 (2013)
$K(u)$ Disentangler generator
L Isommetry generator

cMERA

(continuum)

$$
-i \int^{u 1}(K(u)+L) d u
$$

$|\psi\rangle=P e$
J. Haegeman et al,

Phys. Rev. Lett. 110, 100402 (2013)
$K(u)$ Disentangler generator
L Isommetry generator

$$
\left.g_{u u}(u) d u^{2}=\left.\mathcal{N}^{-1}\left(1-\left|\langle\Psi(u)| e^{i L \cdot d u}\right| \Psi(u+d u)\right\rangle\right|^{2}\right)
$$

Measures the density of strength of disentanglers.
Compatible with AdS metric
curvature ~ change of entanglement at every length scale
M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions

Outline

1) Review of TNs
2) PEPS and emergent Hamiltonians
3) Symmetric TNs and emergent spin networks
4) MERA and emergent AdS/CFT
5) Summary \& open questions

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Entanglement Hamiltonians

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Entanglement Hamiltonians

Entanglement spectrum (energy = eigenvalues)

Quasiparticles (eigenvectors)

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Entanglement Hamiltonians

Entanglement spectrum Quasiparticles (energy = eigenvalues) (eigenvectors)

Mass, statistics...

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Entanglement spectrum Quasiparticles (energy = eigenvalues) (eigenvectors)

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Entanglement spectrum (energy = eigenvalues)

Quasiparticles (eigenvectors)

Mass, statistics...

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Other developments

- Exact holographic mapping
X.-Liang Qi, arXiv:1309.6282
- AdS/CFT as Quantum Error-Correcting Code A. Almheiri, X. Dong, D. Harlow, JHEP 1504:163 (2015)
- Holographic Quantum Error Correcting Codes
F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, JHEP 06149 (2015)
J. I. Latorre, G. Sierra, arXiv:1502.06618
- Einstein's equations from Entanglement Entropy T. Faulkner, M. Guica, T. Hartman, R. C. Myers, M van Raamsdonk, JHEP 03051 (2013); B. Swingle, M. van Raamsdonk, arXiv:1405.2933

Some cross-over open questions

- cMERA, wavelets, and AdS/CFT?
- Superpositions of TTNs? Linear optics?
C. Papadopoulos, RO work in progress
- Consistent AdS/TN? What about other correspondences?
- TN structure of, e.g., $\mathrm{N}=4 \mathrm{SYM}$? (Type-IIB on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$) Can one derive string theory from entanglement?
J. Molina-Vilaplana
- Non-classical gravity from „exotic" TNs? (topological order \& D-branes, TNs with symmetries...)
- Holographic multipartite entanglement? Holographic mixed-state entanglement? D. Pang, RO, work in progress
- "Gravitational" interpretation of branching MERA?
- Numerical simulations of gravity with TN methods?
- „entanglement renormalization" \longleftrightarrow „,holographic renormalization"?
- Lorentz invariance from Lieb-Robinson bounds?

