

Overview: from (many) qubits to space-time

Román Orús

Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)

CERN, June 22 2016

c.f. talks by Latorre, Molina-Vilaplana, Pastawski, Wen, Maldacena

Motivation

Condensed Matter

Quantum Information

Space-time?

(Objects that look like) space-times seem to emerge from the *entanglement structure* of quantum many-body states

(and we were not thinking about gravity at all...)

This talk: overview of some ideas along these lines

Outline

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Outline

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Entanglement obeys area-law

key resource in quantum information

teleportation, quantum algorithms, quantum error correction, quantum cryptography...

2d system

key resource in quantum information

teleportation, quantum algorithms, quantum error correction, quantum cryptography...

 $\rho_{A} = \mathrm{tr}_{E}(|\Psi\rangle\langle\Psi|)$

 $S(A) = -\mathrm{tr}(\rho_A \log \rho_A)$

Reduced density matrix of subsystem A

Entanglement entropy (von Neumann entropy)

For many ground states

2d system

key resource in quantum information

teleportation, quantum algorithms, quantum error correction, quantum cryptography...

 $\rho_A = \operatorname{tr}_E(|\Psi\rangle\langle\Psi|)$

 $S(A) = -\mathrm{tr}(\rho_A \log \rho_A)$

Reduced density matrix of subsystem A

Entanglement entropy (von Neumann entropy)

For many ground states

In d dimensions

Generic state

 $S(A) \sim L^d$ (volume)

Ground states of (most) local Hamiltonians

 $S(A) \sim L^{d-1}$ (area)

Srednicki, Plenio, Eisert, Dreißig, Cramer, Wolf...

Locality of interactions 🔶 area-law

Many-body Hilbert space is far too large

Hilbert space is a convenient illusion

JG

Hilbert space of a N-body many-body system

Hilbert space is a convenient illusion

JG

Hilbert space of a N-body many-body system

> , Set of area-law states Y. Ge, J. Eisert, arXiv:1411.2995

Set of TN states (low-energy eigenstates of local Hamiltonians)

Set of product states (mean field)

Hilbert space is a convenient illusion

JG

Hilbert space of a N-body many-body system

Most states here are not even reachable by a time evolution with a local Hamiltonian in polynomial time

Poulin, Qarry, Somma, Verstraete, PRL 106 170501 (2011) "Exploration" time ~ $O(10^{10^{23}})$ sec.

Compare to... Age of the universe ~ $O(10^{17})$ sec.

Set of area-law states
 Y. Ge, J. Eisert, arXiv:1411.2995

Set of TN states (low-energy eigenstates of local Hamiltonians)

Set of product states (mean field)

We need a language to target the relevant corner of quantum states directly

Tensor Networks

A new language

 $|\Psi\rangle = \sum_{i's} \Psi_{i_1 i_2 \dots i_N} \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle$

Tensors are local building blocks for the quantum state (like a DNA, or LEGO)

Tensor Networks

 $|\Psi\rangle = \sum_{i's} \Psi_{i_1 i_2 \dots i_N} |i_1\rangle \otimes |i_2\rangle \otimes \dots \otimes |i_N\rangle \quad \text{p-level systems}$

Efficient O(poly(N)), satisfy area-law, low-energy eigenstates of local Hamiltonians

Comparison

	MPS in 1d ♀-♀-♀-♀	PEPS in 2d	MERA in 1d
Ent. entropy	S(L) = O(1)	S(L) = O(L)	$S(L) = O(\log L)$
Exact contraction	efficient	inefficient	efficient
Corr. length	finite	finite & infinite	finite & infinite
To/from	1d Ham.	2d Ham.	1d Ham.
Tensors	arbitrary	arbitrary	constrained

Exact in many cases Variational ansatz for numerical simulations (e.g. DMRG)

Exact example 1: Kitaev's Toric Code

$$H = -J\sum_{s} A_{s} - J\sum_{p} B_{p}$$

$$A_s = \prod_{i \in s} \sigma_i^x$$
 star operator

 $B_p = \prod_{i \in p} \sigma_i^z$ plaquette operator

Simplest known model with "topological order"

Ground state (and in fact all eigenstates) are PEPS with D=2

$$\frac{1}{1} + \frac{1}{1} = \frac{2}{1} + \frac{2}{2} = \frac{2}{2} + \frac{2}{1} + \frac{1}{1} = \frac{1}{2} + \frac{1}{2} = 1$$

And another tensor rotated 90°

Outline

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Outline

 \checkmark

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Projected Entangled Pair States (PEPS)

2d systems

3d systems

PEPS obey 2d area-law

$$\begin{split} \rho_{in} &= \operatorname{tr}_{out} \left(\left| \Psi \right\rangle \left\langle \Psi \right| \right) = \sum_{\overline{\alpha}, \overline{\alpha}'} X_{\overline{\alpha}, \overline{\alpha}'} \left| in(\overline{\alpha}) \right\rangle \left\langle in(\overline{\alpha}') \right| \qquad X_{\overline{\alpha}, \overline{\alpha}'} = \left\langle out(\overline{\alpha}') \right| out(\overline{\alpha}) \right\rangle \\ rank(\rho_{in}) &\leq D^{4L} \qquad S(L) = -\operatorname{tr} \left(\rho_{in} \log \rho_{in} \right) \leq \log(D) 4L \end{split}$$

PEPS & Entanglement Hamiltonians

e.g. I. Cirac et al, PRB 83, 245134 (2011), N. Schuch et al, PRL 111, 090501 (2013)

Boundary How is physics described here?

····

Remember it has double indices...

It is also hermitian and positive by construction (up to finite- χ effects)

Particles and energies from Hamiltonians, and Hamiltonians from networks of entanglement + bulk-boundary correspondence

Outline

 \checkmark

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Outline

 \checkmark

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Symmetric tensors and Schur's lemma

JGU

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Structural part depends only on the group properties (intertwiners)

Emergent spin networks

e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Emergent spin networks e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010)

Emergent spin networks e.g., S. Singh, R. N. C. Pfeifer, G. Vidal, PRA 82, 050301 (2010) Coefficient Spin network Symmetric TN $|\Psi\rangle$ States of quantum geometry in loop quantum gravity... Global Local (gauge)

JG|L

Global and gauge symmetries are handled naturally

Outline

 \checkmark

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Outline

 \checkmark

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Multiscale Entanglement Renormalization Ansatz (MERA)

2d systems

1d MERA

holographic dimension (RG)

Tensors obey constraints

Reason:

entanglement is built locally at all length scales

L

coarse-grain entangle locally

entangle locally coarse-grain entangle locally

Extra dimension defines an RG flow: Entanglement Renormalization

Extra dimension defines an RG flow: Entanglement Renormalization

Entropy of 1d MERA

MERA & AdS/CFT

e.g. B. Swingle, PRD 86, 065007 (2012), G. Evenbly, G. Vidal, JSTAT 145:891-918 (2011)

Emergent space-time MERA AdS/CFT $\downarrow I = 0$ I = -1 $I = -\infty$ $(= u_{III})$

 $S_A \propto \text{Min}[\#\text{Bonds}(\gamma_A)]$

 $S_A \propto \text{Min}[\text{Area}]$

JG|l

Picture from M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193

MERA entropy ~ Ryu-Takayanagi prescription

For a scale-invariant MERA, the tensors of a critical model with a CFT limit correspond to a "gravitational" description in a discretized AdS space: "lattice" realization of AdS/CFT correspondence

(time slice)

Let's now play some jazz...

$$\rho_{in} = tr_{out} \left(|\Psi\rangle \langle \Psi| \right) \right]$$
$$\rho_{out} = tr_{in} \left(|\Psi\rangle \langle \Psi| \right) \right]$$

Same **thermal** spectrum (entanglement Hamiltonian) finite temperature, scale invariance broken

$$\rho_{in} = tr_{out} \left(|\Psi\rangle \langle \Psi| \right) \right]$$
$$\rho_{out} = tr_{in} \left(|\Psi\rangle \langle \Psi| \right) \right]$$

Same **thermal** spectrum (entanglement Hamiltonian) finite temperature, scale invariance broken

JG

e.g., T. Hartman, J. Maldacena, JHEP05(2013)014

Thermofield double state

JGU

Eternal AdS black-hole

$$|TFD
angle = rac{1}{\sqrt{Z(eta)}}\sum_n e^{-eta E_n/2}|n
angle_1|n
angle_2$$

e.g., T. Hartman, J. Maldacena, JHEP05(2013)014

Thermofield double state

JG

Eternal AdS black-hole

$$|TFD
angle = rac{1}{\sqrt{Z(eta)}}\sum_n e^{-eta E_n/2}|n
angle_1|n
angle_2$$

Entanglement connects upper and lower spacetimes

M. Van Raamsdonk, arXiv:0907.2939

ER=EPR, Maldacena & Susskind

cMERA

(continuum)

$$\left|\psi\right\rangle = Pe^{-i\int_{u^{2}}^{u^{1}} \left(K(u)+L\right)du} \left|\Omega\right\rangle$$

J. Haegeman et al, Phys. Rev. Lett. 110, 100402 (2013)

- K(u) Disentangler generator
 - *L* Isommetry generator

cMERA

(continuum)

$$\left|\psi\right\rangle = Pe^{-i\int_{u^{2}}^{u^{1}} \left(K(u)+L\right)du} \left|\Omega\right\rangle$$

J. Haegeman et al, Phys. Rev. Lett. 110, 100402 (2013)

K(u) Disentangler generator

L Isommetry generator

$$g_{uu}(u)du^2 = \mathcal{N}^{-1}\left(1 - \left|\langle \Psi(u)|e^{iL\cdot du}|\Psi(u+du)
ight|^2
ight|^2$$

Measures the density of strength of disentanglers. Compatible with AdS metric

M. Nozaki, S. Ryu, T. Takayanagi, JHEP10(2012)193

curvature ~ change of entanglement at every length scale

Outline

 \checkmark

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Outline

1) Review of TNs

2) PEPS and emergent Hamiltonians

3) Symmetric TNs and emergent spin networks

4) MERA and emergent AdS/CFT

5) Summary & open questions

Summary: "it from qubit"

Many-body entanglement (QM, non-relativistic)

Summary: "it from qubit" JGU (QM, non-relativistic) Many-body entanglement Tensor networks

Other developments

• Exact holographic mapping X.-Liang Qi, arXiv:1309.6282

- AdS/CFT as Quantum Error-Correcting Code A. Almheiri, X. Dong, D. Harlow, JHEP 1504:163 (2015)
- Holographic Quantum Error Correcting Codes F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, JHEP 06 149 (2015) J. I. Latorre, G. Sierra, arXiv:1502.06618
- Einstein's equations from Entanglement Entropy T. Faulkner, M. Guica, T. Hartman, R. C. Myers, M van Raamsdonk, JHEP 03 051 (2013); B. Swingle, M. van Raamsdonk, arXiv:1405.2933

Some cross-over open questions

- cMERA, wavelets, and AdS/CFT?
- Superpositions of TTNs? Linear optics?
- Consistent AdS/TN? What about other correspondences?
- TN structure of, e.g., N=4 SYM? (Type-IIB on AdS₅ x S⁵) c.f. talk by Can one derive string theory from entanglement? J. Molina-Vilaplana

C. Papadopoulos, RO work in progress G

- Non-classical gravity from "exotic" TNs? (topological order & D-branes, TNs with symmetries...)
- Holographic multipartite entanglement? Holographic mixed-state entanglement? *D. Pang, RO, work in progress*
- "Gravitational" interpretation of branching MERA?
- Numerical simulations of gravity with TN methods?
- "entanglement renormalization" > "holographic renormalization"?
- Lorentz invariance from Lieb-Robinson bounds?
- •

Thank you!

JGU

