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Figure 1: This figure shows how the AdS cylinder in global coordinates corresponds to the
CFT in radial quantization. The time translation operator in the bulk of AdS is the Dilatation
operator in the CFT, so energies in AdS correspond to dimensions in the CFT.fig:AdSCylinderIntro

for general scalar theories at tree-level and for ⇥4 theory at one-loop. Recently we [2] verified
the conjecture for n-pt amplitudes in general scalar theories at tree-level by showing that our
diagrammatic rules for the Mellin amplitude reduce to the usual Feynman rules in the flat space
limit. By setting up the appropriate scattering experiment [10, 11, 12, 13] in AdS and making
gratuitous use of the stationary phase approximation, we will derive Penedones’ conjecture in
section 2.

Why is the Mellin amplitude related to the flat-space S-matrix? A key point is that
the Dilatation operator in the CFT generates global time translations in AdS, as pictured
in figure 1. In other words, the energy of particles in AdS is given by the dimension of a
CFT operator (or CFT state – we are freely making use the operator-state correspondence).
So aside from their manifest similarity in a large class of examples, one can understand the
relationship between Mellin and scattering amplitudes by thinking about which states in the
CFT correspond to scattering processes in AdS. CFT states dual to AdS particles with energies
parametrically larger than the AdS curvature scale correspond to primary operators with
very large scaling dimension. The �ij’s in the Mellin amplitude correspond to relative scaling
dimensions, so scattering states localize the Mellin amplitude on large �ij’s related to the energy
and momentum of the physical scattering process. We will show how to make this argument
precise by directly extracting scattering states from the correlation functions of n single-trace
operators, written in the Mellin representation. For scattering momenta pi large compared to
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HAdS = DCFT

AdS/CFT Basics

Long-range potentials/forces: V (⇢) ⇠ e�⌧ ⇢
RAdS



Observable: 
Four-Point CFT 

Correlator, as a 
Probe of AdS



What Observable  
(in AdS/CFT)?

OH(0)

OH(1)

OL(1)

OL(z)

hOH(1)OL(1)OL(z)OH(0)i

OH(0)

OH(1)

OL(1)

OL(z)

Some basic facts we can we learn from this…



Directly Measure  
Bulk Geometry

hOH(1)OL(1)OL(z)OH(0)i ⇡ e��LL
geod

(z,1)

OH(0)

OH(1)

OL(1)

OL(z)

Follows at large mass from the
geometric optics approximation in AdS.



Energies and Forces  
in Two-Object Dynamics

AdS

AdS Energy = CFT Dimension

Anomalous dimension,           ,
is a binding energy.

�(n, `)

En,` = Ec + Ed + EKE + �(n, `)

Look at states in the OPE:

Oc(x)Od(0) �
X

E,`

OE,`



Probing Black Holes 
and the Hawking Temp

?

OH(0)

OH(1)

OL(1)

OL(z)

⇡ hOL(1)OL(z)iTH

For example, a correlator in
BTZ black hole background:

ds2 =

✓
r2 + 1� 24

hH

c

◆
dt2 +

dr2

r2 + 1� 24hH

c

+ r2d�2



AdS
Long Range 

Locality 
and 

Universal 
Forces

(An Appetizer)



Formal Definition of 
Long-Distance Locality?

HAdS = HCFT ⇡ Fock Space

Statement about structure of the Hilbert Space:

 d = c =

=) 9  cd =



Center of Mass 
for Excited State

Descendant of a
Primary

AdS CFT

 n,`(t, ⇢,⌦)
�
@2n@µ1 · · · @µ`O

� |0i

AdS Motion = Conformal 
Representation Theory



Two Particle States
CoM at Origin

`Double-Trace’ Primary

An Example: 
Two Particle States

AdS CFT

O@`O|0i `(t, ri, ✓i)



How to Define 
Distant Objects?

AdS
Geodesic separation between cat & dog:

Are there multi-object states at
large angular momentum???

 ⇠ RAdS log `



A Fock Space 
at Large Separation?



Two Object Dynamics

AdS
AdS Energy = CFT Dimension:

Existence of states as               with vanishing
             implies AdS Cluster Decomposition.

Anomalous dimension,           ,
is a `binding energy’.

�(n, `)

�(n, `)

` ! 1

En,` = Ec + Ed + EKE + �(n, `)



General Theorem 
(Any CFT in d>2)

Consider OPE of any two scalar primary operators:

For each     there exists a tower of operators/statesn

O�,` with � = �1 +�2 + 2n+ `+ �(n, `)

�(n, `) ! �n
`⌧m

or �ne
�⌧m

as              , where the anomalous dimensions

from leading twist exchange, generically Tµ⌫

` ! 1

O1(x)O2(0) =
X

�,`

c

12
�,`O�,`(0)



The Idea of the Proof: 
A Scattering Analogy
Free propagation and massless exchange
require large amplitude at large    , e.g.

Partial Wave Amplitudes —> Conformal Partial Waves

`

Completely analogous CFT phenomenon.
Implies existence and energy of large      states.`

1

1� cos ✓
⇡ X

`!1
P`(cos ✓)

t-channel singularity —> lightcone OPE singularity



Gravity and the CFT 
Stress Tensor

Graviton vertices must be universal:

hOH(1)OH(0)Tµ⌫(1)i ⇠ �Hp
c

This comes from the stress tensor normalization

hTµ⌫T↵�i ⇠ c

plus Ward identities for conformal symmetries.

In AdS/CFT, graviton states created by stress tensor.

gµ⌫(X) $ Tµ⌫(x)

Long-range gravity is completely universal.



Probing Black Holes: 
the Heavy-Light Limit

?

OH(0)

OH(1)

OL(1)

OL(z)

⇡ hOL(1)OL(z)iTH

For example, a correlator in
BTZ black hole background:

ds2 =

✓
r2 + 1� 24

hH

c

◆
dt2 +

dr2

r2 + 1� 24hH

c

+ r2d�2

We can!  And in a general, theory-independent way…



A Universal Piece 
of All heavy-Light 

Correlators 
in 2D CFTs 



The Conformal Partial 
Wave Decomposition

Natural to organize amplitudes into `blocks’, ie
irreducible representations of the symmetry. 

Virasoro conformal blocks encapsulate
contributions from all states related by Virasoro:

Although we are focusing on the vacuum conformal block, general blocks also have their

own singularities as can be seen directly in equation (2.13) when 0 < h < 2hL. We expect that

these singularities must also be resolved within the structure of these more general Virasoro

blocks. We are not focusing on them because they are more complicated and less universal,

but they certainly warrant further study.

In summary, the vacuum conformal block, a function determined purely by Virasoro

symmetry, exactly matches AdS3 computations involving deficit angles and BTZ black holes

[]. In the large c limit it has forbidden singularities that are indicative of unitarity violation

and information loss; the large c result is analytic in r+, interpolating between the defifict

and black hole cases. At finite c the forbidden singularities must be resolved within the

structure of V0(z) itself. Thus we can study universal aspects of information loss in black

hole backgrounds by examining the analytic structure of V0(z) as a simultaneous function of

c and z. This will be our focus for the remainder of this work.

3 Exact Virasoro Blocks at Large Central Charge

In this section we will discuss a well-known infinite class of examples where exact information

can be obtained concerning heavy-light vacuum Virasoro blocks. First we will very briefly

review that status of Virasoro blocks and then degerate operators, in section 3.1. Then in

section 3.2 we will explain how the exact correlators that we can obtain analytically continue

to precisely reproduce our previous results at large c. Finally, in section 3.3 we will discuss

how the exact blocks resolve the forbidden singlarities at finite c, emphasizing that from the

point of view of 1/c perturbation theory, the resolution is non-perturbative.

3.1 Brief Review of Virasoro Blocks and Degenerate States

Any CFT2 correlator can be written as a sum over Virasoro conformal blocks

hO1(1)O2(1)O3(z)O4(0)i =
X

h,h̄

Ph,h̄Vhi,h,c(z)Vh̄i,h̄,c
(z̄) (3.1)

where we have chosen the 12 ! 34 channel derived from the OPE expansion of O3(z)O4(0).

The blocks, aka partial waves, encapsulate the contribution of an entire irreducible represen-

tation of the Virasoro algebra to the correlator.

The holomorphic part of the blocks Vhi,h,c(z) depends on the four external operator di-

mensions, the internal primary operator dimension h, the central charge c, and the kinematical

variable z in the plane. Ideally we would like to have an explicit, closed-form expression for

the general Virasoro conformal blocks. Such a formula would allow us to observe how the

forbidden singularities discussed in section 2.2 are resolved by non-perturbative e↵ects ⇠ e�c

in the large c expansion.

This is probably too much to hope for. Current tools provide recursion relations [] that

e�ciently compute the series expansion of the blocks inear z = 0 with generic hi, hint, c; closed

form results in the limit hint ! 1 []; and closed form results as c ! 1 in the heavy-light

– 12 –

In flat space scattering, these are partial waves.

More powerful than global conformal—
Encapsulate all quantum gravitational effects!



Universality of the 
Vacuum Block

hOHOHOLOLi = hOHOHi ⇥ hOLOLi+ · · ·
Always the case that

Thus the vacuum and its Virasoro descendants,
aka the vacuum block, always contribute.

All Virasoro blocks, and in particular the vacuum block, 
have a natural interpretation in AdS/CFT.



‘Gravitons’ and Virasoro

‘Graviton’ states in 3d Gravity or 2d CFT…

In 2d, the stress tensor is purely (anti-)holomorphic

gµ⌫(X) $ Tµ⌫(x)

T (z) =
X

n

z�2�nLn

Virasoro generators are modes of stress tensor.

GN =
3

2c



Gravitons and Virasoro

|gravi = T (0)|0i = L�2|0i

States created by acting at the origin, so

Global conformal generators are

L1, L0, L�1

L�2, L�3, · · ·
and these annihilate the vacuum.  Other generators

create `gravitons’, and do not annihilate the vacuum,
as Virasoro is `spontaneously broken’.



Some Intuition for the 
Virasoro Algebra

[Ln, Lm] = (n�m)Ln+m +
c

12
n(n2 � 1)�n,�m

Graviton correlators and interactions
are fixed by the Virasoro symmetry algebra:

We are interested in large central charge:

c =
3

2G

Virasoro approximately just decoupled oscillators…
(we will go far beyond this conceptually useful limit)



Virasoro Vacuum Block

Virasoro vacuum block = all graviton exchanges in AdS

(exact projector)

Light object in field of black hole in 3d AdS.

OL

OL

⇡
OH

OH

*
OHOH

0

@
X

{mi,ki}

Lk1
�m1

· · ·Lkn
�mn

ihLk0
n0

m0
n0
· · ·Lk0

1

m0
1

N{mi,ki,m0
j ,k

0
j}

1

AOLOL

+



To Study Black Holes:  
Toss in Light Probes

Politics provides many examples.



Heavy-Light  
Semi-Classical Limit

OH(0)

OH(1)

OL(1)

OL(z)

OH(0)

OH(1)

OL(1)

OL(z)

How to compute?  
Many ways, but no time to explain.  On to the result…

hH , h̄H / c � hL, h̄L

c ! 1



The Heavy-Light Vacuum 
Block at Large C

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

after we transform to the cylinder via

The heavy-light Virasoro vacuum block is:

TH =
1

2⇡

r
24

hH

c
� 1

with

t = � log(1� z)
OH(0)

OH(1)

OL(1)

OL(z)



‘Hard’  
and ‘Easier’ 
Information 

Loss Problems



The ‘Hard’ Problem 
(not this talk)

This is the information paradox: how do we reconcile
local, diff invariant QFT in the bulk with the unitarity 

of the quantum mechanical description.

Hawking Radiation

versus

Unitary CFT



The ‘Hard’ Problem 
(not this talk)

From the modern (AdS/CFT) point of view, this is the 
problem of bulk reconstruction near and beyond 

horizons.  Hard to well-define the question!!

Most potential resolutions give up local physics near 
the horizon (e.g. Firewalls) or augment quantum 

mechanics (e.g. final state or PR mirror operators).



An ‘Easier’ Problem

Summary:  black hole physics is too thermal.

Let’s think about another feature of thermality…

Maldacena’s version:  Probe 
correlators in a black hole background 
decay exponentially at arbitrarily late 
times.  Violates unitarity for a theory 

living on a compact space.

Easier because it involves sharp signatures in CFT.

OL(0)

OL(t)

BH



Another Version of the 
‘Easier’ Problem

The KMS condition ~ periodicity in Euclidean time.  
It arises geometrically from AdS Black Holes.

Leads to periodic images of the OPE singularity 
in (the Euclidean region of) CFT correlators.

Allowed for correlators in the canonical ensemble.

z = 1� e�t

with

hO(z)O(0)iT
10

z

z⇤ = 1� e
n
T



An ‘Easier’ Problem: 
Forbidden Singularities

10

z

the periodic images of the singularity OL(z)OL(0) = 1
z2hL

+ · · · due to the universal presence

of the operator ‘1’ in the light operator OPE. Thus we see that correlators in BTZ black hole

backgrounds develop extra singularities that are forbidden from four-point correlators like

equation (2.4).

In the presence of a rational deficit angle, with r+ = i
n and n an integer, then there will

be no forbidden singularities. However, if r+ = in for an integer n � 2, then the image sum

in equation (2.7) is unnecessary for periodicity, and the correlator develops n � 1 extra OPE

image singularities. This case of ‘additional angle’, pictured in figure 3, will be relevant later

on; its structure of forbidden singularities is pictured on the left in figure 2.

2.2 Forbidden Singularities in the Virasoro Vacuum Block

A crucial feature of the AdS3 correlator from equation (2.7) is that the forbidden singularities

come exclusively from the n = 0 term in the image sum. This fact has a natural and extremely

important interpretation in conformal field theory.

It is not clear whether an AdS computation in a black hole background represents a ther-

mal correlator or a pure microstate correlator, since we expect these to be indistinguishable

at leading order in large c / 1/GN . But let us interpret equation (2.7) as a heavy-light

four-point correlator in a CFT. All four-point correlators in CFT2 can be written as a sum

over Virasoro conformal blocks

hOH(1)OL(1)OL(z)OH(0)i = V0(1 � z)V0(1 � z̄) +
X

h,h̄

Ph,h̄Vh(1 � z)Vh̄(1 � z̄) (2.10)

where Ph,h̄ are products of OPE coe�cients. There is a universal contribution from the vac-

uum Virasoro block V0(1�z) necessitated by the fact that both OL(z)OL(0) and OH(z)OH(0)

contain the operator ‘1’ in their OPE. In fact, the vacuum block can be computed directly

using the Virasoro algebra at large c, and it corresponds precisely with the n = 0 term in the

AdS image sum of equation (2.7). But before discussing this further, let us briefly review the

physical content of the Virasoro blocks.

In a quantum theory with a symmetry, we can decompose the states into irreducible

representations of the symmetry group. Then once we know a matrix element with a single

state in the irreducible representation, we can work out matrix elements with other states

related by symmetry. This leads to a partial wave expansion for scattering amplitudes and

correlation functions. In CFTs, this conformal partial wave or conformal block decomposi-

tion can also be derived by applying the OPE expansion. The highest weight state of the

conformal algebra is called a primary state/operator, and all OPE coe�cients in the theory

are determined by the OPE coe�cients of primary operators. The Ph,h̄ in equation (2.10) are

products of these OPE coe�cients.

The Virasoro conformal blocks contain an immense amount of information about quantum

gravity in AdS3. This follows because via AdS/CFT, the stress energy tensor Tµ⌫ of the CFT

creates gravitons in AdS. In the case of d = 2, the Virasoro generators Ln are simply modes

– 10 –

In pure state CFT correlators such as:

Only the true OPE singularities
are allowed in the Euclidean region!



Why Forbidden? 
Radial Quantization.
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z

the periodic images of the singularity OL(z)OL(0) = 1
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2.2 Forbidden Singularities in the Virasoro Vacuum Block

A crucial feature of the AdS3 correlator from equation (2.7) is that the forbidden singularities

come exclusively from the n = 0 term in the image sum. This fact has a natural and extremely

important interpretation in conformal field theory.

It is not clear whether an AdS computation in a black hole background represents a ther-

mal correlator or a pure microstate correlator, since we expect these to be indistinguishable

at leading order in large c / 1/GN . But let us interpret equation (2.7) as a heavy-light

four-point correlator in a CFT. All four-point correlators in CFT2 can be written as a sum

over Virasoro conformal blocks

hOH(1)OL(1)OL(z)OH(0)i = V0(1 � z)V0(1 � z̄) +
X

h,h̄

Ph,h̄Vh(1 � z)Vh̄(1 � z̄) (2.10)

where Ph,h̄ are products of OPE coe�cients. There is a universal contribution from the vac-

uum Virasoro block V0(1�z) necessitated by the fact that both OL(z)OL(0) and OH(z)OH(0)

contain the operator ‘1’ in their OPE. In fact, the vacuum block can be computed directly

using the Virasoro algebra at large c, and it corresponds precisely with the n = 0 term in the

AdS image sum of equation (2.7). But before discussing this further, let us briefly review the

physical content of the Virasoro blocks.

In a quantum theory with a symmetry, we can decompose the states into irreducible

representations of the symmetry group. Then once we know a matrix element with a single

state in the irreducible representation, we can work out matrix elements with other states

related by symmetry. This leads to a partial wave expansion for scattering amplitudes and

correlation functions. In CFTs, this conformal partial wave or conformal block decomposi-

tion can also be derived by applying the OPE expansion. The highest weight state of the

conformal algebra is called a primary state/operator, and all OPE coe�cients in the theory

are determined by the OPE coe�cients of primary operators. The Ph,h̄ in equation (2.10) are

products of these OPE coe�cients.

The Virasoro conformal blocks contain an immense amount of information about quantum

gravity in AdS3. This follows because via AdS/CFT, the stress energy tensor Tµ⌫ of the CFT

creates gravitons in AdS. In the case of d = 2, the Virasoro generators Ln are simply modes
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Away from OPE limits 
we can view

as the inner product of normalizable states.

A theorem on Hilbert spaces: we can expand 
in a basis and obtain a convergent sum.

No non-OPE singularities in Euclidean region!



Our ‘Easier’ Problem: 
Forbidden Singularities

10
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of the operator ‘1’ in the light operator OPE. Thus we see that correlators in BTZ black hole
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where Ph,h̄ are products of OPE coe�cients. There is a universal contribution from the vac-

uum Virasoro block V0(1�z) necessitated by the fact that both OL(z)OL(0) and OH(z)OH(0)

contain the operator ‘1’ in their OPE. In fact, the vacuum block can be computed directly

using the Virasoro algebra at large c, and it corresponds precisely with the n = 0 term in the

AdS image sum of equation (2.7). But before discussing this further, let us briefly review the

physical content of the Virasoro blocks.

In a quantum theory with a symmetry, we can decompose the states into irreducible

representations of the symmetry group. Then once we know a matrix element with a single

state in the irreducible representation, we can work out matrix elements with other states

related by symmetry. This leads to a partial wave expansion for scattering amplitudes and

correlation functions. In CFTs, this conformal partial wave or conformal block decomposi-

tion can also be derived by applying the OPE expansion. The highest weight state of the

conformal algebra is called a primary state/operator, and all OPE coe�cients in the theory

are determined by the OPE coe�cients of primary operators. The Ph,h̄ in equation (2.10) are

products of these OPE coe�cients.

The Virasoro conformal blocks contain an immense amount of information about quantum

gravity in AdS3. This follows because via AdS/CFT, the stress energy tensor Tµ⌫ of the CFT

creates gravitons in AdS. In the case of d = 2, the Virasoro generators Ln are simply modes
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Next we recall that at large central charge, correlators

are, in fact, ‘too thermal’ = have forbidden singularities.



Information Loss is 
a Universal 
Feature of 

Virasoro Blocks at 
Large C



The Heavy-Light Vacuum 
Block at Large C

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

after we transform to the cylinder via

The heavy-light Virasoro vacuum block is:

TH =
1

2⇡

r
24

hH

c
� 1

with

t = � log(1� z)
OH(0)

OH(1)

OL(1)

OL(z)



It’s Too Hot For  
Its Own Good

A ‘too thermal’ correlator at the Hawking temperature.
We see explicitly it has forbidden singularities.

Must be resolved at finite central charge, 
and within its own universal structure.

V(t) =
✓

⇡TH

sin(⇡THt)

◆2hL

= hOL(t)OL(0)iTH

10

z



All Blocks Decay at 
Large Lorentzian Time

We can also compute general heavy-light blocks 
(assuming light intermediate dimension):

These have forbidden singularities/branch cuts too,
but more importantly, at large Lorentzian times:

expect to be able to understand the behavior of the correlator in the large Lorentzian time

regime without knowing all CFT data (the spectrum and the OPE coe�cients of the theory).

However, we have computed the heavy-light Virasoro blocks [21] in the limit that the

intermediate dimension hI is fixed as hH / c ! 1, and for all values of hI , the blocks have

a remarkable common feature: for hH > c
24 they all vanish exponentially when analytically

continued to large Lorentzian time. To see this, note that these blocks have the functional

form [21]

VhI
(z) /

✓
1 � w

1 � z

◆hL

whI�2hL
2F1(hI , hI , 2hI , w), w ⌘ 1 � (1 � z)ir+ (2.13)

with r+ = 2⇡TH =
q

24hH
c � 1, and hH > c

24 corresponding to a BTZ black hole in AdS3.

We can study the Lorentzian time tL via z = 1 � e�itL , in which case since ↵ is imaginary,

we have w = 1 � e2⇡TH tL . Furthermore, at large tL we have

2F1
�
hI , hI , 2hI , 1 � e2⇡TH tL

� / e�2⇡hITH tL (2.14)

so that overall, every block is proportional to e�2⇡hLTH tL as tL ! 1, regardless of the value

of hI ⌧ c. Notice that we have the same behavior as tL ! �1, as we should expect since the

two light operators OL in the correlator are identical. Thus all of the heavy-light, large central

charge Virasoro blocks that we can explicitly compute vanish at large Lorentzian times. Since

we expect the sum over blocks to be convergent in CFT2 [14], this implies that correlators

constructed from such a sum must also vanish exponentially at large tL. Since we do not have

explicit expressions for the Virasoro blocks when hI / c, a loophole remains, as it is possible

that heavy-light blocks with heavy intermediate states do not vanish at late times.

Nevertheless it is interesting to ask if any of the exact heavy-light Virasoro blocks with

hH > c
24 are non-vanishing at large tL, and to study their behavior in this limit Lorentzian

limit. We will begin to address this version of information loss in section 3.4, where in

particular we show that the behavior of the vacuum block changes qualitatively at times of

order SBH = ⇡2

3 cTH , the black hole entropy.

3 Exact Virasoro Blocks at Large Central Charge

To resolve information loss, we need a method to obtain exact information about the heavy-

light Virasoro blocks. In this section we will discuss an infinite class of examples where exact

information can be obtained. First we will very briefly review degerate operators in section

3.1. We provide an illustrative example of the general story in section 3.1.2. Then in section

3.2 we explain how the correlators of degenerate operators can be analytically continued to

precisely reproduce all of our previous large c results. In section 3.3 we will discuss the non-

perturbative resolution of the forbidden singlarities at finite c. Motivated by these successes,

in section 3.4 we discuss the late Lorentzian time behavior of the vacuum block.
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Information Loss Is Due 
To The Virasoro Blocks

From CFT point of view, problem was to understand
why information loss ever occurs!

The answer — it follows from expansion of blocks:

Equivalent to Perturbation theory in    

hH / c, c ! 1
GN

Doesn’t seem to depend on the specific theory,
as Virasoro structure is `kinematic’!



How can we obtain 
exact data on 

Virasoro Blocks 
and Resolve 

Information Loss?



Degenerate Operators

Indeed, there exist “degenerate states” such as

limit, including 1/c correction [] to that limit. The heavy-light limit displays the blocks’

forbidden singularities at large c, but none of these results provide information about how

those singularities are resolved at finite c. The relation of the general large c semi-classical

blocks to the Painlevé VI equation [37], which can only be solved in terms of its own special

function, does not seem to encourage those who might seek a closed form expression for V.

However, as has been known since the early days of CFT2 [38], for certain special values

of the parameters hi, h, c we can obtain exact information about the Virasoro blocks.5 These

are cases where one of the external operators is degenerate, meaning that some of its Virasoro

descendants are null states, ie states with vanishing norm. When discussing degenerate states

it is useful to use a parameter b so that

c = 1 + 6

✓
b +

1

b

◆2

(3.2)

We can take the c ! 1 limit via either b ! 0 or b ! 1. In this notation, the simplest

example of a null state is the second level descendant

�
L2
�1 + b2L�2

� |h1,2i = 0 (3.3)

One can check using the Virasoro algebra of equation (2.12) that the matrix of level two inner

products
 

hh|L2
1L

2
�1|hi hh|L2

1L�2|hi
hh|L2L2

�1|hi hh|L2L�2|hi

!
(3.4)

has a vanishing determinant when the holomorphic dimension h1,2 = �1
2 � 3

4b2 ; the level two

descendant in equation (3.3) is the corresponding null vector. In general, degenerate states

can only occur for holomorphic dimensions satisfying the Kac formula

hr,s =
b2

4
(1 � r2) +

1

4b2
(1 � s2) +

1

2
(1 � rs) (3.5)

for positive integers r, s, which determines the values of h where the Kac determinant vanishes.

Notice that r $ s simply corresponds with b $ 1/b.

Once inserted into a correlator, the relation (3.3) becomes a very useful di↵erential equa-

tion for the correlation functions of the primary operator O1,2(z) that creates |h1,2i. This

follows because within a correlator with operators of dimension hi, a Virasoro generator L�m

will act as a di↵erential operator

L�m !
X

i�1

✓
(r � 1)hi

(zi � z)m
� 1

(zi � z)m�1
@zi

◆
(3.6)

a relation that follows from the OPE of the stress energy tensor. For example, applying these

di↵erential operators and then performing a conformal transformation to send the operators

5For a thorough review see [39] or [40].
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where the state must have dimension

where we have chosen the 12 ! 34 channel derived from the OPE expansion of O3(z)O4(0).
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Null Virasoro Descendants?  Study the determinant of:



Degenerate States at 
Large Central Charge

Figure 3. This figure provides a visualization of a space with an ‘additional angle’ totaling 4⇡
around the origin. This suggests the spatial geometry created by a heavy degenerate operator with
dimension h2,1 = � c

8 at large c. The hr,1 cases always have a total angle of the integer r times 2⇡.

to canonical positions, in the case of O1,2 one finds verify this is the eqn we want before

posting
✓

@2
z +

✓
2
1 + b2

z
+

b2

1 � z

◆
@z � bhH

(1 � z)2

◆
hOH(1)OH(1)O1,2(z)O1,2(0)i = 0 (3.7)

where hH is the dimension of OH . This is a version of the hypergeometric di↵erential equation;

it is an exact relation for this correlator and its conformal blocks. One of its solutions, the

vacuum conformal block, was mentioned in equation (1.5).

In general, one obtains an (rs)th order di↵erential equation for correlators of Or,s(z). For

the fairly wide range of cases of degenerate states with dimension hr,1, the null descendant

can be written in closed form as [39]

X

pi

[(r � 1)!]2
�
b2
�r�k

Qk�1
i=1 (p1 + · · · + pi)(r � p1 � · · · � pi)

L�p1 · · · L�pk |hr,1i (3.8)

where the sum is over partitions of r into k positive integers pi. In later sections we will use

this relation to generate di↵erential equations that must be obeyed by Virasoro conformal

blocks involving degenerate operators.

At large c, the degenerate dimensions hr,s become

hr,s
c!1⇡ c

24
(1 � r2) +

1 � s

2
+

(r � 1)(13 + 13r � 12s)

24
+

3
�
r2 � s2

�

2c
+ · · · (3.9)
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Let’s study the general case:

h1,s ⇡
1� s

2
hr,1 ⇡ � c

24
(r2 � 1)

So there are heavy and light examples:

These are an infinite set of examples
where we can obtain exact information 

about the Virasoro vacuum block.

and



But these Dimensions 
aren’t even Unitary!?

The Virasoro conformal blocks are
analytic functions of the external dimensions,

and have only simple poles in the central charge. 

Expect that via analytic continuation, degenerate 
correlators provide a lot of information.

Proof:  q-expansion absolutely convergent,
coefficients just polynomials in external dimensions.

But the real evidence comes from explicit results…



Connecting 
Degenerate State 
Correlators to 
Large C Results 
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this is a general formula for the null descendant,
so it vanishes inside of correlators.

It provides an         order differential equation
satisfied by the exact vacuum Virasoro block.

rth

[Benoit & Saint-Aubin]



Heavy Degenerate Blocks 
at Large Central Charge

block V can be written as the ansatz7

V = exp

2

4hL

1X

n,m=0

✓
1

c

◆m✓
hL

c

◆n

fmn

✓
hH

c
, z

◆3

5 (3.12)

Then the functions fmn can be determined by expanding the exact results for degenerate

external operators and matching [43]. We have used this method to verify that the degenerate

states match onto results for the vacuum block [25, 44] to first order in 1/c perturbation theory.

3.2.2 Heavy Degenerate States

We can also study the limit where the light probe operator dimension hL is a free variable,

while the heavy operators are degenerate states with dimension hr,1. In fact, this case will

be of greater interest in the sections to follow, because the associated vacuum blocks have

forbidden singularities and interesting non-perturbative structure in the ‘e�c’. For now we

will focus on the connection between these correlators and the general heavy-light large c

Virasoro blocks.

When the hH = hr,1, we find that r+ = 2⇡r with positive integer r, and so the heavy-light

large c vacuum block becomes

V(t) =
ehLt(1 � e�t)2hL

⇥
sinh

�
r
2 t
�⇤2hL

(3.13)

where we recall t = � log(1 � z). This has r singularities at t = ⇡ik
r for k = 0, 1, · · · , r � 1,

where the case k = 0 is the OPE and the others are forbidden.

This result can also be obtained from the large c limit of the rth order null state dif-

ferential equation obtained from the operator of equation (3.8), as we now show. In fact,

when expanded at large c, we find that the di↵erential equations become first order, with the

universal form

(@t � hLgr(t)) V(t) = 0, (3.14)

where

gr(t) = coth

✓
t

2

◆
� r coth

✓
rt

2

◆
(3.15)

This equation has the heavy-light vacuum block with hH = hr,1 as its unique solution. As a

first example, for the case r = 2 the exact degenerate state di↵erential equation is

V 00(t) + (1 + b2) coth

✓
t

2

◆
V 0(t) + b2hLV(t) = 0 (3.16)

7Until recently it was not clear whether such an ansatz would be valid, but [19] provides a derivation for

the case of the vacuum block. However, a similar expansion of general Virasoro blocks in the intermediate

operator dimension hI
c

would not be valid, as the large c limit with hI fixed is not equivalent to the large c

limit with hI/c fixed.
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operator dimension hI
c

would not be valid, as the large c limit with hI fixed is not equivalent to the large c

limit with hI/c fixed.

– 17 –

At large c we obtain the simpler differential equation:

The heavy-light vacuum block is the solution.

An        order equation has become first order!

Physical case just requires analytic continuation to:

rth

r = 2⇡iTH



Resolution of CFT 
Information Loss 

Problems 



Forbidden Singularities: 
An Explicit Example

-0.4 -0.2 0.2 0.4

2

4

6

8

c = 1000
c = 2500
c = 5000
c = ∞

Figure 5. This figure shows the behavior of a degenerate Virasoro vacuum block near a forbidden
singularity for various values of the central charge c. We have specifically plotted log |V2,1| with hL = 1
as a function of the variable log(z � 1) in the vicinity of z = 2.

As before, the large c di↵erential equation is most e↵ectively extracted from the operators

arranged as follows:

0 = h |Or,1(0)OL(x1)OL(x2)i

⇡
*

hr,1

������
Or,1(0)

2

4Lr +
6

c

r�1X

j=1

1

j(r � j)
LjLr�j , OL(x1)OL(x2)

3

5
+

(3.27)

where the four-point function in this configuration is related to the function V(z) by (3.19).

It is straightforward though tedious to work out the commutator of any individual factor

LjLr�j above. However, our main interest is in the behavior near the forbidden singularities,

at z = 1 � e
2⇡in
r . To explore the behavior around this singularity, we take x1 = 1, x2 = 1 � z

in a scaling limit

1 � z = e
� 2⇡in

r
� xp

T , (3.28)

where |T | ! 1, and T is defined conventionally by c = 13�6(T +1/T ). At fixed x and large

|T |, this scaling limit therefore zooms in on the singularity and allows us to see explicitly how

the divergence is cut o↵ by finite c e↵ects. The correction terms in (3.26) survive in this large

T limit, and the new resulting leading order di↵erential equation is

0 = 2hLg(x) + xg0(x) � g00(x)�2n(r), (3.29)

where V(z) = g(x), and

�2n(r) ⌘ 4
r�1X

j=1

sin2
⇣
jn⇡
r

⌘

rj(r � j)
. (3.30)
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Simplest example is the (2,1) case, with exact block:

c!1! 1

sinh2(t)

where              .  In the vicinity of z = 2

V2,1 = 2F1(2, b2 + 1, 2b2 + 2, z)

z2

hL = 1



Forbidden Singularity 
Resolution, in General

�

2
n(r)V 00(x)� xV 0(x)� 2hLV(x) = 0

Singularities are resolved in a universal way.
Differential equation for correlators near singularities: 

Putting c back, it can be solved by the function:

S(x) =

Z 1

0
dp p

2hL�1
e

�px��2
n(r)

2c p

2

It’s a natural toy model for an entire
function that has a singularity at large c…

but this is actually the physical result.



A Prediction for 1/c 
Perturbation Theory

Consider expanding this function in 1/c:

S(x) =

Z 1

0
dp p

2hL�1
e

�px��2
n(r)

2c p

2

/ 1

x

2hL
+

�

2
n(r)(2hL + 1)hL

c x

2hL+2
+ · · ·

So it makes a prediction about form of 1/c corrections   
to the general heavy-light blocks.

We computed them, and they match.



Late Lorentzian 
Time Behavior



Late Time (Non-)Decay 
in the Lorentzian Region?
The large central charge blocks/correlators decay 

exponentially, at a rate we found earlier:

OL(0)

OL(t)

BH

We can study the late time behavior via analytic 
continuation of our degenerate differential equations.

V ⇠ e�2⇡hLTHtL

To avoid information loss
this must cease before:

|V| ⇠ e�SBH



Late Time (Non-)Decay 
in the Lorentzian Region?

in the vicinity of their forbidden singularities. Then the 1/c corrections to the leading large

c limit near the singularity must take the form

1

x2hL
� 6�2hL(2hL + 1)

c

1

x2hL+2
+ · · · (3.44)

Notice that this makes a precise prediction for the strength of the singularity in x, for the

relationship between the h2
L and hL terms, and for the overall coe�cient. Since we have an

explicit expression for the leading and 1/c corrected heavy-light blocks [26, 29], we can search

for the x�2hL�2 term in the vicinity of forbidden singularities, and extract the coe�icent �2.

In appendix B we show that the general Virasoro blocks match precisely to the prediction

from this analysis and from equation (3.42).

3.4 Large Lorentzian Time Behavior from an Interesting Approximation

AdS correlators in a black hole background decay exponentially at late times, signaling loss of

information concerning initial perturbations. As we discussed in section 2.3, the heavy-light

Virasoro blocks with hH > c
24 (above the BTZ black hole threshold) exhibit the same behavior

as c ! 1. Thus it would be very interesting to be able to compute the exact heavy-light

blocks at late Lorentzian times. We do not have an exact relation for these blocks, but we

can make a very interesting approximation that incorporates the non-perturbative physics

that resolves the forbidden singularities.

We showed in section 3.2.2 that the blocks with heavy degenerate operators obey a 1st

order di↵erential equation to leading order at large central charge. Furthermore, a universal

2nd order di↵erential equation seems to resolve all forbidden singularites, as explained in

section section 3.3.2. In fact, all of these di↵erential equations can be obtained from limits of

a single, 2nd order master equation. It can be written as

�hLgr(t)V(t) + V 0(t) +
⌃r(t) + ⌃�r(t)

b2
V 00(t) = 0, (3.45)

where

gr(t) = coth

✓
t

2

◆
� r coth

✓
rt

2

◆
(3.46)

⌃r(t) = � 1

r sinh
�

rt
2

�
✓

e� rt
2 B̃r(t) + e

rt
2 B̃r(�t) � 2 cosh

✓
rt

2

◆
B̃r(0)

◆
. (3.47)

We have introduced the function B̃r(t) which can be represented in a few di↵erent ways that

each have di↵erent advantages. First, it arises directly from the sum over the di↵erent terms

in (3.37) as the following sum:

B̃r(t) =
r�1X

j=1

etj

j
. (3.48)
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At NLO at large central charge, we find 
a general differential equation:

The function            grows linearly at late time:

� = ����
� = ����
� = ����

� � � � � �
���

���

���

���

��
� π

�
� |Σ�(�)|

Figure 6. In all cases, we take r = 2⇡iTH = i
2 and t = tE + itL with fixed tE = �i. Left, top: The

magnitude of the coe�cient term 6
c⌃r(t) for various values of c as a function of Lorentzian time. At

late Lorentzian time, it grows approximately linearly with a slope of order 1/SBH . Right, top: Same
as left, top, but on a log scale to show the absolute size more clearly. Bottom: Plots of the numerical
solution to (3.45) for various values of c. The solutions track the c = 1 solution at early times, until
the correction term becomes important at times of order tL ⇠ SBH , as can be seen in the plot. The
large time behavior should not be taken literally, as our approximations break down for tL & SBH .

produces perturbative 1/c e↵ects.14 However, when V is O(c) or larger, as it is in the vicinity

of forbidden singularities, the source term is large and (3.45) captures some non-perturbative

e↵ects as well.

The correction term can of course also become important when it becomes large through

its time-dependence. In the Lorentzian regime, increasing tL = Im(t) causes B̃r(t) to pick

up a shift by an exponential function every 2⇡, as can be seen from the integral expression

14In fact, solving (3.45) (plus the 1/c coe�cients of V and V 0 terms that we have neglected) at next-to-

leading order in a formal 1/c is one way of deriving the perturbative 1/c corrections to the block. Since the

analytic continuation from the non-unitary region to the unitary region appears to be justified, the di↵erential

equation (3.45) may provide an easier method for deriving 1/c corrections to Virasoro conformal blocks in the

heavy-light limit than that adopted in [29].

– 29 –

1

c
⌃TH

(tL) ⇡
tL
cTH

/ tL
SBH

⌃TH



Late Time (Non-)Decay 
in the Lorentzian Region?

in the vicinity of their forbidden singularities. Then the 1/c corrections to the leading large

c limit near the singularity must take the form

1

x2hL
� 6�2hL(2hL + 1)

c

1

x2hL+2
+ · · · (3.44)

Notice that this makes a precise prediction for the strength of the singularity in x, for the

relationship between the h2
L and hL terms, and for the overall coe�cient. Since we have an

explicit expression for the leading and 1/c corrected heavy-light blocks [26, 29], we can search

for the x�2hL�2 term in the vicinity of forbidden singularities, and extract the coe�icent �2.

In appendix B we show that the general Virasoro blocks match precisely to the prediction

from this analysis and from equation (3.42).

3.4 Large Lorentzian Time Behavior from an Interesting Approximation

AdS correlators in a black hole background decay exponentially at late times, signaling loss of

information concerning initial perturbations. As we discussed in section 2.3, the heavy-light

Virasoro blocks with hH > c
24 (above the BTZ black hole threshold) exhibit the same behavior

as c ! 1. Thus it would be very interesting to be able to compute the exact heavy-light

blocks at late Lorentzian times. We do not have an exact relation for these blocks, but we

can make a very interesting approximation that incorporates the non-perturbative physics

that resolves the forbidden singularities.

We showed in section 3.2.2 that the blocks with heavy degenerate operators obey a 1st

order di↵erential equation to leading order at large central charge. Furthermore, a universal

2nd order di↵erential equation seems to resolve all forbidden singularites, as explained in

section section 3.3.2. In fact, all of these di↵erential equations can be obtained from limits of

a single, 2nd order master equation. It can be written as

�hLgr(t)V(t) + V 0(t) +
⌃r(t) + ⌃�r(t)

b2
V 00(t) = 0, (3.45)

where

gr(t) = coth

✓
t

2

◆
� r coth

✓
rt

2

◆
(3.46)

⌃r(t) = � 1

r sinh
�

rt
2

�
✓

e� rt
2 B̃r(t) + e

rt
2 B̃r(�t) � 2 cosh

✓
rt

2

◆
B̃r(0)

◆
. (3.47)

We have introduced the function B̃r(t) which can be represented in a few di↵erent ways that

each have di↵erent advantages. First, it arises directly from the sum over the di↵erent terms

in (3.37) as the following sum:

B̃r(t) =
r�1X

j=1

etj

j
. (3.48)
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The terms are all of the same order when:

V 0(tL) ⇠
tL

SBH
V 00(tL)

tL =
SBH

2⇡hLTH

which occurs precisely when

V ⇠ e�SBHso that

Effects that resolve forbidden singularites also
qualitatively change late Lorentzian behavior!



Late Time (Non-)Decay 
in the Lorentzian Region?

Beyond times of order the BH entropy,
we cannot truncate to a 2nd order 

differential equation — our approximations
break down, as formally it seems we need an “infinite 

order differential equation”.

This likely implies very chaotic behavior at even 
larger times, which is what we expect.

We haven’t demonstrated this, but we’d like to!



Non-Perturbative 
Effects in C  
or ‘Solitons’ 
of ‘Gravitons’



Exact Block as a Sum 
over (AdS?) Solutions

infinite class of examples with degenerate external operators where the vacuum block can be

computed exactly at any c. These special cases agree precisely with our more general results

[18, 19, 25] as c ! 1, and in particular, exhibit forbidden singularities in the large central

charge limit. Relating the infinite discretum of degenerate vacuum blocks to the general

heavy-light case requires analytic continuation, and so we review the analyticity properties

of the Virasoro blocks in section 3.1.1.

1.1 Borel Resummation and Classical Solutions in AdS3

It is interesting to have examples of correlators exhibiting information loss as c ! 1. But

our real goal is to understand the resolution of information loss from the vantage point of

perturbation theory in GN = 3
2c . In other words, we would like to expand the exact result as

V0(z) = Vc=1(z)

✓
1 +

f1(z)

c
+ · · ·

◆
+ e�cs(z)

✓
g0(z) +

g1(z)

c
+ · · ·

◆
+ · · · (1.6)

to explicitly identify the non-perturbative e↵ects that restore unitarity. The first term cor-

responds to perturbation theory about the AdS3 vacuum. We expect that the other terms

correspond to non-perturbative corrections involving solutions to Einstein’s equations incor-

porating the exchange of states with Planckian energy, as we will now explain.

Many series expansions in quantum mechanics have zero radius of convergence. Given

such a formal series

f(g) =
X

n

angn (1.7)

we can define a Borel series B(g) by an ! an
n! , and in many cases B(g) will then have a finite

radius of convergence. Now we can try to define a function

f(g) =

Z 1

0

db

g
e�b/gB(z) (1.8)

as the Borel transform, which reproduces the angn if we expand B in b. If the Borel integral

converges and has no singularities on the real axis, then it can be viewed as a definition of f(g).

Singularities on the real axis lead to ambiguities in f(g), and more generally, singularities

in the Borel plane lead to branch cuts when f(g) is analytically continued [26]. Relevant

examples will be studied in section 4.

We can connect singularities in the Borel plane to classical solutions of the field equations

via a cute illustrative argument given by ’t Hooft [27]. Simply equate the Borel transform

and the path integral description of the correlator

Z 1

0
db e�b/gB(b) ⇠

Z
D� e�

1
g
S(�) (1.9)

– 5 –

At large c, we might write the asymptotic expansion

`Perturbative AdS Vacuum’

Exchange of `Heavy State’

Can accomplish this via Borel resummation.

But what are these heavy states, ie instanton geometries?



What Happens in the 
Degenerate Case?

This means that the Borel function is just a translation of G0(s)! Explicitly

B(s, y) =
1X

k=0

yk

k!
@k
sG0(s) = G0(s + y) (4.10)

The initial function

G0(s) =
1

e
s
4
⇥
cosh

�
s
2

�⇤ 3
2

(4.11)

can be computed directly from the leading large c limit. should re-verify these equations

After some minor simplifications, we can write V as the Borel transform

V2,1(b, s) =
⇣
cosh

⇣s

2

⌘⌘ 3
2

Z 1

0
dy

e�y+ y

4b2

⇥
cosh

�
s
2 � y

2b2

�⇤ 3
2

(4.12)

As s ! �1, corresponding to the OPE limit z ! 0, the denominator blows up, and the

integral becomes very small. Note that c / b2 ! +1 is the relevant semi-classical limit, so

y/b2 will always be positive.

We are interested in the behavior of the integrand of equation (4.12), and especially in

its singularities as a function of y for various values of b and s. The hyperbolic cosine in the

denominator has singularities at

yn = b2 (s + ⇡i(1 + 2n)) (4.13)

for integers n. These will mark the beginning of branch cuts extending to infinity in the Borel

plane. This is interesting because when s ⇡ ⇡i, the Borel integral has a branch cut starting

at y = 0, which is the very beginning of the integration contour. This signals the complete

breakdown of 1/c perturbation theory about the vacuum, which is exactly what we expect

in the vicinity of a forbidden singularity. Note that if we expand s(t) about the forbidden

singularity at t = ⇡i, we find

s(t) ⇡ i⇡ +
1

4
(t � i⇡)2 + · · · (4.14)

We see that to keep the singularities yn in the Borel plane fixed as we take the semi-classical

limit b ! 1, we must keep the quantity b(t � i⇡) constant. This is the scaling we discovered

in section 3.3.2 and it is also appropriate for the Gaussian example from the previous section,

recalling that c / b2.

We would like to understand the physical state associated with the non-perturbative

e↵ect that we have discovered. This is actually trivial to determine, once we recall that V2,1

represents a correlator of degenerate states. These states can only fuse as

�(2,1) ⇥ �(2,1) = 1 + �(3,1) (4.15)

– 25 –

The heavy state must make a contribution that solves 
the null descendant differential equation, so it must be:

For other degenerate correlators, find that
the heavy states that make non-perturbative 
contributions obey fusion rules, as expected:

�(r,1) ⇥ �(r,1) =
rX

k=1

�(2k�1,1)



A General Conjecture

We conjecture that the semi-classical `instantons’ in the 
asymptotic expansion of the vacuum block look like

1X

k=1

�(2k�1,1)

For general blocks of dimension    , we 
conjecture instantons have semi-classical dimension:

Infinite discretum of solutions to monodromy problem.

h

hinst(h, k) ⇡ h+
1

6
⇡ck

 r
24h

c
� 1 + ⇡k

!



Information Loss 
Takeaway Points



Information Loss as 
‘Too Thermal’ Correlators
(We study 2d CFTs because they have all the same 
information loss problems as in higher dimensions, 
yet we have far more powerful tools.)

Information loss manifests in CFT through 
correlators that are too thermal, with large central 
charge playing the role of a thermodynamic limit. 

We will consider two sharp signatures of 
information loss — forbidden singularities in 
Euclidean correlators, and exponential decay at 
late times in Lorentzian correlators.



Information Loss is 
Universal in 2+1 Dims

Information loss from 3d black holes (via AdS/CFT) 
appears to be universal — independent of CFT data such 
as the spectrum and OPE coefficients.  This might be 
expected based on the robustness of black hole physics, 
plus the fact that gravitational physics is encapsulated 
by Virasoro symmetry.

In fact, it seems that information loss can be understood 
based only on the Virasoro symmetry algebra at large 
central charge.



Information Loss Can be 
Resolved Explicitly

Information loss problems can be explicitly resolved in 
an infinite set of examples, which can be analytically 
continued in order to compute physical correlators.  We 
find non-perturbative effects that resolve the forbidden 
singularities and alter the behavior of correlators at late 
times — specifically, when

                                            and

When expanded at large central charge, the results look 
like a sum over (weird) geometries, and should tell us 
more about the gravitational path integral.

t ⇠ SBH |V| ⇠ e�SBH



Conclusions
• Information loss is a consequence of the large 

central charge expansion of the Virasoro algebra.
• Possible to obtain non-perturbative results of the 

form                            resolving information loss.
• Need to explicitly derive the “instantons"!  Bulk 

geometric interpretation may be odd.  Provides a 
new, partial definition for the bulk path integral.

• We have “almost thermal” correlators — could 
provide a more precise picture of Papadodimas-
Raju Mirror Operator Story, and its limitations?  

e�c ⇠ e�1/GN


