Horizon as Critical Phenomenon

Sung-Sik Lee

McMaster University
Perimeter Institute
arXiv : 1603.08509

AdS/CFT correspondence

[Maldacena]

- Conjecture :
D-dim QFT = (D+1)-dim quantum gravity
- The bulk space is emergent, and the geometry is dynamical
- Well tested for some supersymmetric field theories, but we don't have a proof yet

Goal

A first principle derivation of AdS/CFT correspondence, which allows one to find holographic duals for general QFTs*

*For general QFTs, holographic duals can be non-classical / nonlocal. Yet, a first principle construction may give us new insight into quantum gravity.

Other related approaches

General Connection between holography and RG

- E. T. Akhmedov, Phys. Lett. B 442 (1998) 152
- J. de Boer, E. Verlinde and H. Verlinde, J. High Energy Phys. 08, 003 (2000)
- S. R. Das and A. Jevicki, Phys. Rev. D 68 (2003) 044011.
- R. Gopakumar, Phys. Rev. D 70 (2004) 025009; ibid. 70 (2004) 025010.
- I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, J. High Energy Phys. 10 (2009) 079.
- I. Heemskerk and J. Polchinski, arXiv:1010.1264
- T. Faulkner, H. Liu and M. Rangamani, arXiv:1010.4036.
- R. Koch, A. Jevicki, K. Jin and J. P. Rodrigues, arXiv:1008.0633.
- M. Douglas, L. Mazzucato, and S. Razamat, Phys. Rev. D 83 (2011) 071701.
- R. Leigh, O. Parrikar, A. Weiss, arXiv:1402.1430
- E. Mintun and J. Polchinski, arXiv:1411.3151

What is behind the AdS/CFT correspondence? RG $\approx G R$

- Radial direction in the bulk = length scale of QFT
- Bulk variables : scale dependent coupling functions
- Radial evolution of the bulk fields correspond to the RG flow

The connection between $R G$ and $G R$ is incomplete

*In order to make the connection precise, RG should be promoted to quantum RG

Plan

- An introduction to quantum RG
- RG flow as a wavefunction collapse
- An application of quantum RG
- Vector model
- Matrix model

From action to state

$$
\begin{gathered}
|S\rangle=\int D \phi e^{-S[\phi]}|\phi\rangle, \\
\left\langle\phi^{\prime} \mid \phi\right\rangle=\prod_{i} \delta\left(\phi_{i}^{\prime}-\phi_{i}\right)
\end{gathered}
$$

- An action of QFT in D-dimensional space defines a Ddimensional quantum state
- The Boltzmann weight becomes wavefunction

Sources as variational parameters

$$
\begin{aligned}
S & =-\mathcal{J}^{M} \mathcal{O}_{M} \\
|\{\mathcal{J}\}\rangle & =\int D \phi e^{\mathcal{J}^{M} \mathcal{O}_{M}}|\phi\rangle
\end{aligned}
$$

- State can be labeled by the sources of operators

Tensor representation

$e^{\mathcal{J}_{i j k}\left(\phi_{i} \phi_{j}\right)\left(\phi_{j} \phi_{k}\right)}$

O_{M} can be composite of multiple operators

Tensor representation

- Local action generates states given by a product of local tensors
- They are over-complete

Single-trace operator

$$
\mathcal{O}_{M}=\sum c_{M}^{n_{1}, n_{2}, \cdot \cdot} O_{n_{1}} O_{n_{2}} .
$$

- Minimal set of operators of which all singlet operators can be written as polynomial

States generated from single-trace operators form a complete basis

States generated from single-trace operators form a complete basis

$\int D \phi e^{\sum_{k} \mathcal{J}^{n_{1}, n_{2}, \ldots, n_{k} O_{n_{1}} O_{n_{2}} . . O_{n_{k}}}}|\phi\rangle=\int D j \Psi_{S}(\mathcal{J}, j)|j\rangle$

Partition function is an overlap

 between states$Z=\int D \phi e^{-\left(S_{0}+S_{1}\right)}=\left\langle S_{0}^{*} \mid S_{1}\right\rangle$

$$
\begin{aligned}
\left|S_{0}\right\rangle & =\int D \phi e^{-S_{0}[\phi]}|\phi\rangle \\
\left|S_{1}\right\rangle & =\int D \phi e^{-S_{1}[\phi]}|\phi\rangle
\end{aligned}
$$

RG flow as wave-function collapse

$Z=\left\langle S_{0} \mid S_{1}\right\rangle=\left\langle S_{0}\right| e^{-d z \hat{H}}\left|S_{1}\right\rangle=\left\langle S_{0} \mid S_{1}+\delta S_{1}\right\rangle$

- $\left|S_{0}\right\rangle$ is the ground state of H^{+}with zero energy
- H acting on $\left|S_{1}\right\rangle$ generates $R G$ flow

$$
Z=\left\langle S_{0}\right| e^{-z \hat{H}}\left|S_{1}\right\rangle
$$

Example : Wilson-Polchinski RG equation

$$
\begin{array}{r}
S_{0}=\frac{1}{2} \int d^{D} k G_{\Lambda}^{-1}(k) \phi_{k} \phi_{-k} \quad S_{1}=\text { interactions } \\
e^{-\left(S_{1}+\delta S_{1}\right)}=\langle\phi| e^{-d z \hat{H}}\left|S_{1}\right\rangle \\
\hat{H}=\int d k\left[\frac{\tilde{G}(k)}{2} \hat{\pi}_{k} \hat{\pi}_{-k}-i\left(\frac{D+2}{2} \hat{\phi}_{k}+k \partial_{k} \hat{\phi}_{k}\right) \hat{\pi}_{-k}\right] \\
\tilde{G}(k)=\frac{\partial G_{\Lambda}(k)}{\partial \ln \Lambda}
\end{array}
$$

Direct product state for the reference state (tentative IR fixed point)

$$
Z=\int D j^{(0)}\left\langle S_{0}^{*} \mid j^{(0)}\right\rangle \Psi\left(j^{(0)}\right)
$$

Coarse graining

Quantum RG

- State with multi-trace tensors can be written as a linear superposition of single-trace states
- Non-local single-trace tensors are generated

Quantum RG

$Z=\left.\int D j D j(z) e^{-\int d z\left(j^{*} z_{z} j+\mathcal{H}\left[j^{*}, j\right]\right)} \Psi_{1}(j)\right|_{j(0)=j}$

- The RG flow is confined to the space of single-trace sources
- Sum over all RG path in the single-trace space
- Single-trace sources are promoted to quantum operators $\left[j^{n}, j_{m}^{\dagger}\right]=\delta_{m}^{n}$
- Quantum RG to Wilsonian RG is what

multi-trace operators quantum computer is to classical computer

Further comments

- The bulk tensor network involves single-trace tensors of all sizes (no pre-assigned local structure : locality can emerge only dynamically
- The bulk theory include dynamical gravity : the source for single-trace energy momentum tensor (metric) gets promoted to dynamical variables
- Regularization of quantum gravity boils down to regularization of QFT
- In the large N limit, bulk d.o.f. becomes classical

Question

Is the projection always smooth ?

Answer

- If the full theory $\mathrm{S}_{0}+\mathrm{S}_{1}$ is in the same phase as S_{0}, $\mid S_{1}>$ is smoothly projected.
- Otherwise, $\mathrm{e}^{-\mathrm{H}} \mathrm{H} \mid \mathrm{S}_{1}>$ undergoes a phase transition as a function of z

Example 1 : Vector Model

Example : U(N) Vector model

$$
\mathcal{S}=\int d^{D} x \sqrt{g}\left[g^{\mu \nu} \partial_{\mu} \vec{\phi} \cdot \partial_{\nu} \vec{\phi}+m^{2}|\vec{\phi}|^{2}+\frac{\lambda}{N}\left(|\vec{\phi}|^{2}\right)^{2}\right]
$$

Lattice Regularization :

$$
\begin{aligned}
& S_{0}=m^{2} \sum_{i}\left(\boldsymbol{\phi}_{i}^{*} \cdot \boldsymbol{\phi}_{i}\right) \\
& S_{1}=-\sum_{i j} t_{i j}^{(0)}\left(\boldsymbol{\phi}_{i}^{*} \cdot \boldsymbol{\phi}_{j}\right)+\frac{\lambda}{N} \sum_{i}\left(\boldsymbol{\phi}_{i}^{*} \cdot \boldsymbol{\phi}_{i}\right)^{2}
\end{aligned}
$$

Example : U(N) Vector model

$$
Z=\left\langle S_{0} \mid t^{(0)}\right\rangle
$$

Gapped phase (direct product state)

$$
\left|S_{0}\right\rangle=\int D \phi e^{-m^{2} \sum_{i} \phi_{i}^{*} \cdot \phi_{i}}|\phi\rangle
$$

Deformation to the gapped fixed point (entangled state)
$\left|t^{(0)}\right\rangle=\int D \boldsymbol{\phi} e^{\sum_{i j} t_{i j}^{(0)} \phi_{i}^{*} \cdot \phi_{j}-\frac{\lambda}{N} \sum_{i}\left(\phi_{i}^{*} \cdot \phi_{i}\right)^{2}}|\boldsymbol{\phi}\rangle$

Hamiltonian

$$
\hat{H}=\sum_{i}\left[\frac{2}{m^{2}} \boldsymbol{\pi}_{i} \cdot \boldsymbol{\pi}_{i}^{*}+i\left(\boldsymbol{\phi}_{i} \cdot \boldsymbol{\pi}_{i}+\boldsymbol{\phi}_{i}^{*} \cdot \boldsymbol{\pi}_{i}^{*}\right)\right]
$$

- H is not Hermitian, but has real eigenvalues (related to Hermitian through a similarity transformation)
- $\mid \mathrm{S}_{0}>$ is the ground state of H^{+}with zero energy
- $\mathrm{e}^{-\mathrm{zH}}$ gradually removes entanglement ${ }^{*}$ in $\left|\mathrm{t}^{(0)}\right\rangle$
* Entanglement in spacetime

Bulk Hamiltonian (in a fixed gauge)

$$
\begin{aligned}
\hat{\mathcal{H}}= & \sum_{i}\left[-\frac{2}{m^{2}} t_{i i}+\frac{4 \lambda\left(1+\frac{1}{N}\right)}{m^{2}} t_{i i}^{\dagger}-4 \lambda\left(t_{i i}^{\dagger}\right)^{2}-\frac{8 \lambda^{2}}{m^{2}}\left(t_{i i}^{\dagger}\right)^{3}\right] \\
& +\sum_{i j}\left[2+\frac{4 \lambda}{m^{2}}\left(t_{i i}^{\dagger}+t_{j j}^{\dagger}\right)\right] t_{i j}^{\dagger} t_{i j}-\frac{2}{m^{2}} \sum_{i j k}\left[t_{k j}^{\dagger} t_{k i} t_{i j}\right]
\end{aligned}
$$

- $\mathrm{t}_{\mathrm{ij}}\left(\mathrm{t}_{\mathrm{ij}}\right)$ creates (annihilates) a quantum of connectivity
- The Hamiltonian describes evolution of quantum geometry in the bulk

Background independence

$$
t_{i k}^{\dagger} t_{i j}
$$

$$
t_{i k}^{\dagger} t_{i j} t_{j k}
$$

- There is no bare kinetic term for the bi-local object
- No pre-imposed background

Background independence

$$
t_{i k}^{\dagger} t_{i j} t_{j k} \rightarrow t_{i k}^{\dagger} t_{i j}<t_{j k}>
$$

- t_{ij} can move only in the presence of condensate
- VEV of dynamical fields determines the geometry on which t_{ij} propagates
- The bi-local fields propagate on the shoulders of themselves

Saddle point approximation

- In the large N limit, semi-classical RG path dominates the partition function
- At the saddle point, $t_{i j} \rightarrow \bar{t}_{i j}, \quad t_{i j}^{*} \rightarrow \bar{p}_{i j}$
$\partial_{z} \bar{t}_{i j}=-2\left\{\frac{2 \lambda \delta_{i j}}{m^{2}}-\delta_{i j}\left[4 \lambda+\frac{12 \lambda^{2}}{m^{2}} \bar{p}_{i i}\right] \bar{p}_{i i}+\frac{2 \lambda \delta_{i j}}{m^{2}} \sum_{k}\left(\bar{t}_{i k} \bar{p}_{i k}+\bar{t}_{k i} \bar{p}_{k i}\right)\right.$

$$
\left.+\left[1+\frac{2 \lambda}{m^{2}}\left(\bar{p}_{i i}+\bar{p}_{j j}\right)\right] \bar{t}_{i j}-\frac{1}{m^{2}} \sum_{k} \bar{t}_{i k} \bar{t}_{k j}\right\}
$$

$\partial_{z} \bar{p}_{i j}=2\left\{-\frac{\delta_{i j}}{m^{2}}+\left[1+\frac{2 \lambda}{m^{2}}\left(\bar{p}_{i i}+\bar{p}_{j j}\right)\right] \bar{p}_{i j}-\frac{1}{m^{2}} \sum_{k}\left(\bar{p}_{i k} \bar{t}_{j k}+\bar{t}_{k i} \bar{p}_{k j}\right)\right\}$
Exact solution :
$\bar{T}_{q}(z)=\frac{2 \lambda}{m^{2}}+m^{2}+\frac{2 \lambda}{m^{2}} e^{-2 z}\left(m^{2} \bar{p}_{0}(0)-1\right)-m^{2} \frac{\delta^{2}+q^{2}}{\left(1-e^{-2 z}\right)\left(q^{2}+\delta^{2}\right)+m^{2} e^{-2 z}}$,
$\bar{P}_{q}(z)=\frac{e^{-2 z}}{q^{2}+\delta^{2}}+\frac{1-e^{-2 z}}{m^{2}}$

Metric

- Fluctuations away from saddle point

$$
\tilde{t}_{i j}=t_{i j}-\bar{t}_{i j}
$$

- Anti-symmetric component obeys a simple diffusive equation in the bulk

$$
\begin{gathered}
\tilde{t}_{i j}^{A}=\tilde{t}_{i j}-\tilde{t}_{j i} \\
\left(m \sqrt{g^{z z}} \partial_{z}-g^{\mu \nu} \partial_{\mu} \partial_{\nu}-g^{\mu \nu} \partial_{\mu}^{\prime} \partial_{\nu}^{\prime}+\ldots\right) \tilde{t}^{A}\left(x, x^{\prime}, z\right)=0
\end{gathered}
$$

Gapped phase

- The range of entanglement (hopping) saturates in the large z limit
- The strength of hopping (entanglement) decays exponentially in z
- $\mathrm{e}^{-\mathrm{zH}}\left|\mathrm{S}_{1}\right\rangle$ is smoothly projected to the direct product state in the large z limit
- The bulk terminates at a finite proper distance
- The proper distance measures the complexity : \# of RG steps needed to remove all entanglement
[Susskind]

$$
d s^{2}=\left(\frac{1}{1+\left(\frac{\delta}{m} e^{z}\right)^{2}}\right)^{2} \frac{d z^{2}}{m^{2}}+\left(\left(\frac{\delta}{m}\right)^{2}+e^{-2 z}\right) \sum_{\mu=0}^{D-1} d x^{\mu} d x^{\mu} .
$$

Gapless phase

Gapless phase

- The range of entanglement (hopping) keep increasing with increasing z
- $\mathrm{e}^{-2 \mathrm{H}}\left|\mathrm{S}_{1}\right\rangle$ can not be smoothly projected to the direct product state in the large z limit
- In the large z limit, the range of entanglement diverges : critical point $->$ Poincare horizon

$$
d s^{2}=\frac{d z^{2}}{m^{2}}+e^{-2 z} \sum_{\mu=0}^{D-1} d x^{\mu} d x^{\mu}
$$

- In metallic phase, horizon arises at finite z

Example 2 : A toy example

Matrix field theory which has no other operators with finite scaling dimension except for the energy-momentum tensor

D-dim matrix QFT

on a curved background

$$
Z\left[g^{(0)}\right]=\int D \Phi \quad e^{i S_{1}\left[\Phi ; g^{(0)}(x)\right]}
$$

- S_{1} is an action which has only single-trace operators deformed by energy-momentum tensor
- This is equivalent to putting the theory on a curved background metric
- We assume that the theory is regularized respecting the D-dim. Diffeomorphism invariance

$$
Z\left[g^{(0)}\right]=Z\left[g^{(0)^{\prime}}\right]
$$

Coarse graining

$$
\begin{equation*}
g_{\mu \nu}^{(0)}(x) \rightarrow g_{\mu \nu}^{(0)}(x) e^{-N^{D}(x) d z} \tag{0}
\end{equation*}
$$

$\delta S^{\prime}\left[T^{\mu \nu} ; g^{(0) \mu \nu}\right]=d z N^{2} \int d^{D} x N^{D}(x)\left\{\sqrt{\left|g^{(0)}\right|}\left(-C_{0}+C_{1}^{D} \mathcal{R}\left(x ; g^{(0)}\right]\right)\right.$

$$
\left.-A_{\mu \nu} T^{\mu \nu}+\frac{B_{\mu \nu ; \rho \sigma}}{2} T^{\mu \nu} T^{\rho \sigma}+. .\right\}
$$

Change of scale :
Warping factor

Casimir energy [Sakharov(67)]

Shift

$$
Z\left[g^{(0)}\right]=\int D \Phi \quad e^{i S_{1}\left[\Phi ; g^{(0)}(x)\right]+i \delta S^{\prime}\left[T^{\mu \nu} ; g^{(0)}\right]+i \delta S^{\prime \prime}\left[T^{\mu \nu} ; g^{(0)}\right]}
$$

$$
\delta S^{\prime \prime}\left[T^{\mu \nu} ; g^{(0) \mu \nu}\right]=d z N^{2} \int d^{D} x\left(\nabla_{\mu}^{(1)} n_{\nu}^{(1)}+\nabla_{\nu}^{(1)} n_{\mu}^{(1)}\right) T^{\mu \nu}
$$ length

Auxiliary fields

$$
\begin{aligned}
& Z\left[g^{(0)}\right]=\int D g_{\mu \nu}^{(1)} D \pi^{(1) \mu \nu} D \Phi e^{i N^{2} \int d^{D} x \pi^{(1) \mu \nu}\left(g_{\mu \nu}^{(1)}-g_{\mu \nu}^{(0)}\right)} \\
& e^{i \delta S^{(1)^{\prime}}\left[i / N^{2} \delta / \delta g_{\mu \nu}^{(1)} ; g^{(0)}\right]} e^{i \delta S^{(1)^{\prime \prime}}\left[i / N^{2} \delta / \delta g_{\mu \nu}^{(1)}\right]} e^{i S_{1}\left[\Phi ; g^{(1)}\right]} \\
& \text { - } T^{\mu \nu}=-i \frac{1}{N^{2}} \frac{\delta}{\delta g_{\mu \nu}^{(1)}}
\end{aligned}
$$

- $\pi^{(1) \mu \nu}$: Lagrangian multiplier

Double trace operator : dynamical metric

$$
Z\left[g^{(0)}\right]=\int D g_{\mu \nu}^{(1)} D \pi^{(1) \mu \nu} D \Phi e^{i N^{2} \int d^{D} x \pi^{(1) \mu \nu}\left(g_{\mu \nu}^{(1)}-g_{\mu \nu}^{(0)}\right)}
$$

$$
\times e^{i \delta S^{\prime}\left[\pi^{(1) \mu \nu}, g^{(0)}\right]+i \delta S^{\prime \prime}\left[\pi^{(1) \mu \nu}, g^{(0)}\right]} e^{i S_{1}\left[\Phi ; g^{(1)}\right]}
$$

$$
\begin{aligned}
\delta S^{\prime}= & d z N^{2} \int d^{D} x N^{D}(x)\left\{\sqrt{\left|g^{(0)}\right|}\left(-C_{0}+C_{1}^{D} \mathcal{R}\left(x ; g^{(0)}\right]\right)\right. \\
& \left.+A_{\mu \nu} \pi^{(1) \mu \nu}+\frac{B_{\mu \nu ; \rho \sigma}}{2} \pi^{(1) \mu \nu} \pi^{(1) \rho \sigma}+. .\right\} \\
\delta S^{\prime \prime}= & d z-N^{2} \int d^{D} x\left(\nabla_{\mu}^{(1)} n_{\nu}^{(1)}+\nabla_{\nu}^{(1)} n_{\mu}^{(1)}\right) \pi^{(1) \mu \nu}
\end{aligned}
$$

- Quadratic term in $\pi^{(1) \mu v}$ provides a Gaussian width for $g^{(1)}{ }_{\mu \nu}$, which becomes a genuine fluctuating metric

Bulk action

$$
S_{D+1}=\frac{N^{2}}{2 \kappa^{2}} \int d z \int d^{D} x\left[\pi_{\mu \nu} \partial_{z} g^{\mu \nu}-N^{D} \mathcal{H}-N^{\mu} \mathcal{H}_{\mu}\right]
$$

Casimir energy Beta function of $\quad T^{\mu \nu} T^{\rho \sigma}$

$$
\begin{aligned}
\mathcal{H} & \left.=-\sqrt{g} C_{0}+R^{D}+\frac{g^{-1}}{2}\left(\alpha \pi^{2}-\pi^{\mu \nu} \pi_{\mu \nu}\right)+. .\right] \\
\mathcal{H}^{\mu} & =-2 \nabla_{\nu} \pi^{\mu \nu}
\end{aligned}
$$

Not fixed by D-dimensional diff. inv.

- The linear term in $\pi^{\mu v}$ can be absorbed by a shift in $\pi^{\mu v}$ and a boundary term

First-class constraints

- Independence of partition function on RG schemes (speed of RG and shifts) \rightarrow ($D+1$)constraints

$$
\begin{array}{r}
\left\langle\mathcal{H}_{M}(x, z)>=\frac{1}{Z} \frac{\delta Z}{\delta N^{M}(x, z)}=0 \quad \mathcal{H}=0, \quad \mathcal{H}_{\mu}=0\right. \\
\mathrm{M}=0,1,2, \ldots,(\mathrm{D}-1), \mathrm{D}
\end{array} N^{D}(x, z) \equiv \alpha(x, z) \text { and } \mathcal{H}_{D} \equiv \mathcal{H}
$$

- The ($D+1$)-constraints are (classically) first-class

$$
\begin{gathered}
\frac{\partial}{\partial z}\left\langle\mathcal{H}_{M}(x, z)\right\rangle=\int d^{D} y N^{M^{\prime}}(y, z)\left\langle\left\{\mathcal{H}_{M}(x, z), \mathcal{H}_{M^{\prime}}(y, z)\right\}\right\rangle=0 \\
\left\{\mathcal{H}_{M}(x, z), \mathcal{H}_{M^{\prime}}(y, z)\right\}=0
\end{gathered}
$$

Einstein Gravity upto two derivatives

[SL, 1305.3908]

$$
\begin{aligned}
S_{D+1}= & \frac{N^{2}}{2 \kappa^{2}} \int d z \int d^{D} x\left[\pi_{\mu \nu} \partial_{z} g^{\mu \nu}-N^{D} \mathcal{H}-N^{\mu} \mathcal{H}_{\mu}\right] \\
= & \frac{N^{2}}{2 \kappa^{2}} \int d^{D+1} X \sqrt{|G|}\left(-\Lambda+{ }^{(D+1)} \mathcal{R}+. .\right) . \\
\mathcal{H}= & \left.-\sqrt{g} C_{0}+R^{D}+\frac{g^{-1}}{2}\left(\frac{\pi^{2}}{D-1}-\pi^{\mu \nu} \pi_{\mu \nu}\right)+. .\right]
\end{aligned}
$$

Uniquely fixed by the first-class constraint condition
[Blas, Pujolas, Sibiryakov (09); Henneaux, Kleinschmidt and Gomez (10)]

Summary

- Quantum RG = Sum over RG paths for a subset of couplings
- A bulk action that determines the weight of RG path describes dynamical geometry
- The bulk theory describes a collapse of wavefunction associated with an action to a fixed point
- Obstruction to smooth projection manifests itself as a horizon in the bulk

