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Introduction: “The unreasobale connectivity of physics”
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Introduction
The career of a young (?) theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction”
Sidney Coleman
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The basic idea. Discrete MERA.

Entanglement Renormalization. MERA.

(Vidal 2007)



Introduction Entanglement Renormalization. MERA cMERA and 2D String Theory Conclusions

The basic idea. Discrete MERA.

Entanglement Renormalization. MERA



Introduction Entanglement Renormalization. MERA cMERA and 2D String Theory Conclusions

The basic idea. Discrete MERA.

Entanglement Renormalization and Holography.

Proposal (Swingle, 2009) connecting the ideas of:
AdS/CFT (Maldacena, 1998)
Holographic Entanglement Entropy (Ryu-Takayanagi, 2006)
Quantum Renormalization Group (Vidal, 2007)

Conceptual di�culties
The network is fixed so it is di�cult to see “how spacetime
emerges”.
Indepently of the Large N limit, we always attain a discrete
version of a classical spacetime
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The basic idea. Discrete MERA.

Entanglement Renormalization and Holography.
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Continuous Entanglement Renormalization. cMERA.

Continuous Entanglement Renormalization. cMERA.

cMERA (Haegeman et al 2011) is a real-space RG in a
hamiltonian framework at the level of wavefunctions.
cMERA represents the wavefunction of the system at each
length scale u.
Rather than integrating out high-frequency modes around a
cuto� L, an operator K(u) first disentangles these modes in
such a way that they can be isometrically projected onto a
reference and totally disentangled vacuum |Y

IR

i.
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Continuous Entanglement Renormalization. cMERA.

Continuous Entanglement Renormalization. cMERA

Scale dependent representations of the state are obtained by
adding left-right moving modes with |k |  Le

�u to |Y
IR

i.
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Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation

cMERA is described by the operation

|Y(u)i = P exp
✓
�i

Z
u

u

IR

dû (K(û) + L)
◆
|Y

IR

i

where K(û) is the entangler operator, L is the coarse-graining
operation and |Y

IR

i is a boundary state in the sense that is a
completely factorized state in real space.

We will make some analysis in the interaction picture where we only
attend to the disentangling operation and

|F(u)i = e

iuL|Y(u)i = P exp
✓
�i

Z
u

u

IR

dû

e
K (û)

◆
|Y

IR

i
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Continuous Entanglement Renormalization. cMERA.

cMERA Interaction Picture

while the entangler reads

K̃(u) = e

�iuLK(u) e

iuL

The merit of the ‘interaction’ picture is that at each layer u of
the cMERA, we have the same Hilbert space defined in
0 < |k | < L in momentum space. This allows us to define
and calculate the overlaps,

hF(u)|F(u + e)i
very useful for us later.
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Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation. Free Boson Theory

For the free boson theory

S =
Z

dtdx

⇣
(∂

t

f)2 + (∂
x

f)2 � m

2f2
⌘

The entangler operator is given by

eK(u) = � i

2

Z

|k |Le

�u

dk

⇣
g

k

(u) a

†
k

a

†
�k

� ḡ

k

(u)a
k

a�k

⌘

with a

k

|0i = 0, a�k

|0i = 0
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Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation

The state at scale u can be written as a SU(1, 1) gaussian
squeezed state

|F(u)i = N exp
�� 1

2
R

dk F
k

(u) R

†
k

L

†
k

� |0i
R

|0i
L

with R

k

= a

k

, L

k

= a�k

and R

k

|0i
R

= 0, L

k

|0i
L

= 0

or

|F(u)i = N exp
�� 1

2
R

dk F
k

(u) a

†
k

a

†
�k

� |0i
R

|0i
L

with F
k

(u) = hF(u)|R
k

L

k

|F(u)i = R
u

0 dû g

k

(û)
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Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation

|F(u)i = µ ’|k |Le

�u

exp
⇣

F
k

(u) a

†
k

a

†
�k

⌘
|0i

R

|0i
L

⇥ ’
|k |>Le

�u

|Y
IR

i

and F
k

(u) = hF(u)|R
k

L

k

|F(u)i ⇠ ’condensate’.
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Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation
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Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation. Final Remark

Proposal for |Y
IR

i as the Dirichlet boundary state (Miyaji et
al 2015)

|Y
IR

i ⌘ |Bi = exp
✓
�1

2

Z
dk a

†
k

a

†
�k

◆
|0i

R

|0i
L

In these states the entanglement between the left and right
moving modes LREE (see Digression below) is maximal so
there is no real space entanglement.
They appear in the worldsheet description of propagating
strings in spacetimes with boundaries (D-branes).
Interesting LREE computations on D-branes (Pando-Zayas et
al, 2016)
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cMERA Path Integral.

cMERA & Emergent space-time

Is it possible to ‘see’ an emergent spacetime

from the Entanglement Renormalization of

the wavefunction?
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cMERA Path Integral.

cMERA Path Integral

Write the cMERA amplitude

G(u
F

, u
IR

) = hF(u
F

)|P exp
✓
�i

Z
u

F

u

IR

K̃(û) dû

◆
|F(u

IR

)i

as a SU(1,1) coherent state path integral.

By standard methods,'

&

$

%

Z = G(0, u
IR

) =
Z

D(F, F̄)(u) exp (i S

e�

[F, F̄])

Z =
Z

D(F, F̄)(u) exp
✓
�i

Z
dxdu

⇥
B(F, F̄) + K̃(F, F̄)

⇤
e

�u

◆
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cMERA Path Integral.

cMERA Path Integral

Z =
Z

D(F, F̄)(u) exp
✓
�i

Z
dxdu

⇥
B(F, F̄) + K̃(F, F̄)

⇤
e

�u

◆

with
B(F, F̄) =

1
2i

(F̄ ∂
u

F � F ∂
u

F̄)

K̃(F, F̄) = hF(u)|K̃(u)|F(u)i�

⇢

⇠

⇡
S

e�

[F, F̄] = �2
Z

dxdu F̄(u) e

�u ∂
u

F(u)
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cMERA Path Integral.

cMERA Path Integral
The coherent state description of cMERA for a free boson yields a
natural geometric representation of the RG flow by means of a two
dimensional metric on a manifold (u, x) given by

ds

2 = g

uu

du

2 + e

�2u

dx

2
g

ab

= diag

�
g

uu

, e

�2u

 

with
g

uu

= g

k

(u)2

THE VARIATIONAL PARAMETER F
k

(u) of CMERA

F
k

(u) =


�1

4 log k

2 + m

2

L2 + m

2

�

k=L e

�u

= �1
4 log e

�2u + m̄

2

1 + m̄

2
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cMERA Path Integral.

cMERA Path Integral

is obtained by

d E
dF

k

=
d

dF
k

hY
IR

|H(u
IR

)|Y
IR

i = 0

where H(u
IR

) is the hamiltonian density of the boson theory at the
length scale u

IR

.

Then it is straightforward to obtain

g

k

(u) = ∂
u

F
k

(u) =
1
2

e

�2u

(e�2u + m̄

2)

with m̄ = m/L ⌧ 1
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cMERA Path Integral.

cMERA Path Integral

e

�u∂
u

F
k

(u) =
p

g

uu

e

�u =
p

g with p
g = det g

ab

Thus one may formally write

S

e�

[F, g ] =
1
4

Z
d

2s
p

g R(2)F(u)

R(2) = �8 scalar curvature of the metric tensor g

ab

In JHEP09(2015)002 it is shown how F(u) is related with the EE of
the left and right moving modes at scale u needed to create |F(u)i.
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Digression. Entanglement Structure in cMERA

Digression: Left-Right Entanglement Entropy

CMERA as a scale-dependent Bogoliubov transformation

The state |F(u)i is anihilated by:

b

k

(u) = A

k

(u) a

k

+ B

k

(u) a

†
�k

i.e, b

k

(u)|F(u)i = 0

with

A

k

(u) = cosh F
k

(u) B

k

(u) = � sinh F
k

(u)
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Digression. Entanglement Structure in cMERA

Digression: Left-Right Entanglement Entropy

Now, we trace-out the left-moving modes of |F(u)i,

rR

k

(u) = Tr[L] [|F(u)ih|F(u)|] = Â
n

g
k

(u)n(1 � g
k

(u)) |n
R

ihn
R

|

with

g
k

(u) =
h

B

k

(u)
A

k

(u)

i2
= (tanh F

k

(u))2 |n
R

i = 1p
n

R

!

�
a

†
k

�
n

R |0i
R
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Digression. Entanglement Structure in cMERA

Digression: Left-Right Entanglement Entropy

The reduced density matrix is diagonal of the form

rR

k

(u) = (1 � g
k

(u)) diag

�
1,g

k

(u),g
k

(u)2,g
k

(u)3 · · · �

and can be written as

rR

k

(u) = e

�bH
ent

(u)

with b = 2p and H
ent

(u) = #
k

(u) a

†
k

a

k

known as the entanglement
hamiltonian, where

#
k

(u) = � 1
b

log g
k

(u)
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Digression. Entanglement Structure in cMERA

Digression: Left-Right Entanglement Entropy
The LREE, which amounts to the Von Neumann entropy

S

k

(u) = �Tr [ rR

k

(u) log rR

k

(u) ],

can be written as

S

k

(u) = � g
k

(u)
1 � g

k

(u)
log g

k

(u)� log(1 � g
k

(u))

and

∂
u

S

k

(u) ⇡ �2 g

k

(u)

in the limit of g ⇡ 1 . Thus,

g

uu

µ (∂
u

S

k

(u))2
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Worldsheet action of Closed Bosonic Strings

Closed Bosonic String Action

The worldsheet action for a closed bosonic string in a curved back-
ground

S

ws

=
1

4pa0
Z

S
d

2s
p

g

h
g

ab

Gµn(X )∂
a

X

µ∂
b

X

n
i
+

1
4p

Z

S
d

2s
p

gR(2)F(X )

where s , g

ab

and R(2) are coordinates, metric and scalar curvature
on the world-sheet respectively; X

µ(s) denote target space coor-
dinates with µ = 0 · · ·D � 1 and D the dimension of the target
spacetime, Gµn(X ) is the target spacetime metric and F(X ) is the
dilaton field.
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Worldsheet action of Closed Bosonic Strings

Closed Bosonic String Action
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Worldsheet action of Closed Bosonic Strings

Closed Bosonic String Action

S

ws

=
1

4pa0
Z

S
d

2s
p

g

h
g

ab

Gµn(X )∂
a

X

µ∂
b

X

n + a0R(2)F(X )
i

Can be understood as a theory of 2D gravity (g
ab

) coupled to con-
formal matter (X µ(s) ) with coupling constants Gµn(X ) and F(X )

To impose this theory to be a 2D conformal theory on the 2D world-
sheet, the trace of Energy-Momentum tensor T

ab

on the world-sheet
must vanish.
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Worldsheet action of Closed Bosonic Strings

Background Fields E.O.M’s

This amounts to impose that the Weyl anomaly b-functions,

bF

a0 =
D � 26

6a0 +
1
2
⇥
4(rµF)2 � 2r2F �R⇤

= 0

bG

µn = Rµn + 2rµrnF = 0

rµ and R are the target spacetime covariant derivative and the
scalar curvature respectively.

The vanishing of bG

µn and bF leads to e�ective equations of motion
for the background fields Gµn and F.
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Worldsheet action of Closed Bosonic Strings

Non Trivial Solutions. Linear Dilaton Background

A consistent background solution to the equations of motion for
arbitrary D consists in a flat target spacetime and a linear dilaton,

Gµn(X ) = hµn

F(X ) = VµX

µ

VµV

µ =
26 � D

12a0 = Q

2

For D < D

crit

= 26, the dilaton gradient is spacelike.
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2D String Theory Linear Dilaton Solution.

2D String Theory. Linear Dilaton Background
◆
✓

⇣
⌘

2D String Theory: the worldsheet theory is Liouville theory + c = 1
conformal matter. It is considered the baby cousin of AdS/CFT
(Klebanov, Ginsparg-Moore, Polchinski)

We consider the case for D = 2 and F(X ) lying along X

1, i.e.,

F(X ) = Q X

1; Q

2 = 2/a0.

The strength of the string interactions varies as a function of
the X

1 coordinate as

g

e�

= e

F(X ) = e

QX

1

in the X

1 ! • region of the target spacetime g

e�

diverges
and string perturbation theory fails.
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2D String Theory Linear Dilaton Solution.

2D String Theory. Linear Dilaton Background

Two dimensional spacetime with dilaton and tachyon backgrounds
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2D String Theory Linear Dilaton Solution.

2D String Theory Linear Dilaton Background

The geometry seen by the propagating string is a two
dimensional flat spacetime with a dilaton linearly varying
along its X

1 direction.
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2D String Theory Linear Dilaton Solution.

cMERA Linear Dilaton Background

May the cMERA action S

e�

be interpreted as the dilaton term of
the worldsheet action? Let us recall the variational solution

F(u) = �1
4 log e

�2u + m̄

2

1 + m̄

2

When m̄ = 0,
F(u) = Q u

with Q = 1/2 and g

uu

= 1/4.
Choosing the target spacetime coordinates as
X

µ = (X 0,X 1) = (x , u) and Gµn(X ) = diag(1, g
uu

), S

e�

reads as,
S

e�

=
1
4

Z
d

2s
p

g R(2)
Q X

1
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2D String Theory Linear Dilaton Solution.

cMERA Linear Dilaton Background. Comments

When m̄ = 0, it is suggested that the cMERA e�ective action
describes a linear dilaton background with Q = 1/2 .

The consistency condition Q

2 = 2/a0 imposes that one has to
work in units where a0 ⌘ 8.

This amounts to define a fiducial string interaction strength
g

2
0 ⇠ a0 which landmarks the regime g

2
e�

= e

X

1 ⌧ g0 where
perturbation theory is valid.
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2D String Theory Linear Dilaton Solution.

cMERA Linear Dilaton Background. Comments

In CMERA parlance, states |F(X 1)i close to the UV point,
(entanglement at all length scales) =) regions where
perturbation theory is valid.

Meanwhile, states located at the IR region (those that have
been devoid of their entanglement at small length scales)
=) strong coupling region.

The inverse string coupling limits the number of the left-right
moving entangled modes at the scale u to those with
momentum k  Lg

�2
e�

.
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2D String Theory Black Hole.

Two Dimensional Black Hole.

String theory also describes strong gravitational fields like
black holes. A non trivial solution is the 2D black hole
(Witten 91).
Here, the spacetime manifold parametrizes the coset
SL(2,R)/U(1).
The spacetime geometry seen by the string looks like a cigar.
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2D String Theory Black Hole.

Two Dimensional Black Hole.

The non-trivial fields in spacetime are the metric and the dilaton
given by,

G11(X ) =
1
4 tanh2 �2QX

1 + log M

�

F(X ) = �1
2 log 2M � 1

2 log(2QX

1 + log M)

with G00(X ) = 1 and M being a mass constant. As M ! 0,
the background is the linear dilaton which is also recovered when
X

1 ! 0 .
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2D String Theory Black Hole.

cMERA Two Dimensional Black Hole.

Now we look at the CMERA variational solution

F(u) = �1
4 log e

�2u + m̄

2

1 + m̄

2

when m̄ 6= 0. If we choose M = m̄ and the target spacetime metric
and coordinates as before, as long as X

1 < � log m̄, one may write

G11(X ) =
1
4 tanh2 �2QX

1 + log m̄

�
(= g

uu

(u))

and
F(X 1) = �1

2 log 2m̄ � 1
2 log(2QX

1 + log m̄)
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2D String Theory Black Hole.

cMERA Two Dimensional Black Hole.

The scalar curvature of g

ab

,

R(2) = ≠8 + 8m̄

4
e

4X

1

remains constant along the X

1 coordinate before it
exponentially vanishes when reaching X

1• ⇠ � log m̄.
Breakdown of the linear dilaton behaviour at X

1• where,

F(X 1• )⇡≠1
2 log m̄

and G11 changes its sign, which might be interpreted by the
presence of an horizon.
Here, the e�ective string coupling g

2
e�

= e

2QX

1• ⇠ 1/m̄ � g

2
0 .
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Conclusions.

The cMERA of di�erent ground states correspond to
non-trivial backgrounds of 2D string theory.
Insights on how the background fields Gµn and F arise from
the structure of the LREE.
How general is the idea that gravitational systems, such as
black holes or other cosmological spaces are represented by
composite entities of microscopic entangled quantum
constituents?
Excited states, dynamical processes (covariant formulation of
cMERA), interacting and/or chiral theories, cMERA in higher
dimensions?
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