Entanglement Renormalization and Two Dimensional String Theory

J. Molina-Vilaplana¹

¹Technical University of Cartagena, Spain

Emergent Properties of Spacetime, CERN, 27th June 2016

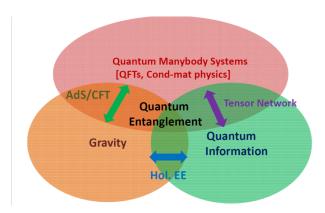
- Introduction
- 2 Entanglement Renormalization. MERA
 - The basic idea. Discrete MERA.
 - Continuous Entanglement Renormalization. cMERA.
 - cMERA Path Integral.
 - Digression. Entanglement Structure in cMERA
- 3 cMERA and 2D String Theory
 - Worldsheet action of Closed Bosonic Strings
 - 2D String Theory Linear Dilaton Solution.
 - 2D String Theory Black Hole.
- 4 Conclusions

Talk partially based on works:

Introduction

- Entanglement Renormalization and two dimensional String Theory, PhysLett B755 (2016) 421-425. [arXiv: 1510.09020] (JMV)
- Information Geometry of Entanglement Renormalization for free Quantum Fields, JHEP09(2015)002. [arXiv:1503.07699] (JMV)

Conclusions

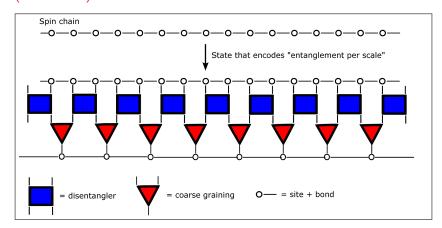


Introduction

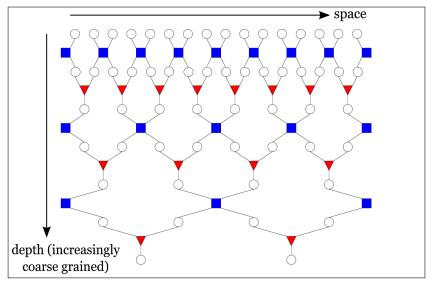
The career of a young (?) theoretical physicist consists of treating the harmonic oscillator in ever-increasing levels of abstraction" Sidney Coleman

Entanglement Renormalization. MERA.

(Vidal 2007)



Entanglement Renormalization. MERA



Entanglement Renormalization and Holography.

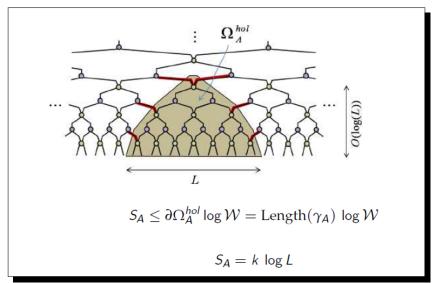
Proposal (Swingle, 2009) connecting the ideas of:

- AdS/CFT (Maldacena, 1998)
- Holographic Entanglement Entropy (Ryu-Takayanagi, 2006)
- Quantum Renormalization Group (Vidal, 2007)

Conceptual difficulties

- The network is fixed so it is difficult to see "how spacetime emerges".
- Indepently of the Large N limit, we always attain a discrete version of a classical spacetime

Entanglement Renormalization and Holography.

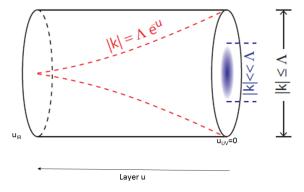


Continuous Entanglement Renormalization. cMERA.

- cMERA (Haegeman et al 2011) is a real-space RG in a hamiltonian framework at the level of wavefunctions.
- cMERA represents the wavefunction of the system at each length scale u.
- Rather than integrating out high-frequency modes around a cutoff Λ , an operator $\mathcal{K}(u)$ first disentangles these modes in such a way that they can be isometrically projected onto a reference and totally disentangled vacuum $|\Psi_{IR}\rangle$.

Continuous Entanglement Renormalization. cMERA

• Scale dependent representations of the state are obtained by adding left-right moving modes with $|k| \leq \Lambda e^{-u}$ to $|\Psi_{IR}\rangle$.



cMERA Coherent State Formulation

cMERA is described by the operation

$$|\Psi(u)
angle = \mathcal{P} \exp\left(-i\int_{u_{IR}}^u d\hat{u} \left(\mathcal{K}(\hat{u}) + \mathcal{L}
ight)
ight) |\Psi_{IR}
angle$$

where $\mathcal{K}(\hat{u})$ is the entangler operator, \mathcal{L} is the coarse-graining operation and $|\Psi_{IR}\rangle$ is a boundary state in the sense that is a completely factorized state in real space.

We will make some analysis in the interaction picture where we only attend to the disentangling operation and

$$|\Phi(u)\rangle = \mathrm{e}^{\mathrm{i} u \mathcal{L}} |\Psi(u)\rangle = \mathcal{P} \exp\left(-\mathrm{i} \int_{u_{\mathit{IR}}}^{u} d\hat{u} \, \widetilde{K}(\hat{u})\right) |\Psi_{\mathit{IR}}\rangle$$

cMERA Interaction Picture

while the entangler reads

$$\tilde{\mathcal{K}}(u) = e^{-iu\mathcal{L}}\mathcal{K}(u) e^{iu\mathcal{L}}$$

• The merit of the 'interaction' picture is that at each layer u of the cMERA, we have the same Hilbert space defined in $0<|k|<\Lambda$ in momentum space. This allows us to define and calculate the overlaps,

$$\langle \Phi(u)|\Phi(u+\epsilon)\rangle$$

very useful for us later.

cMERA Coherent State Formulation. Free Boson Theory

For the free boson theory

$$S = \int dt dx \, \left((\partial_t \phi)^2 + (\partial_x \phi)^2 - m^2 \phi^2 \right)$$

The entangler operator is given by

$$\widetilde{\mathcal{K}}(u) = -\frac{i}{2} \int_{|k| \le \Lambda e^{-u}} dk \left(g_k(u) a_k^{\dagger} a_{-k}^{\dagger} - \bar{g}_k(u) a_k a_{-k} \right)$$

with
$$a_k|0\rangle = 0$$
, $a_{-k}|0\rangle = 0$

cMERA Coherent State Formulation

The state at scale u can be written as a SU(1,1) gaussian squeezed state

$$|\Phi(u)
angle = \mathcal{N} \exp\left(-rac{1}{2}\int dk \, \Phi_k(u) \; R_k^\dagger L_k^\dagger \,
ight) |0
angle_R |0
angle_L$$

with
$$R_k = a_k$$
, $L_k = a_{-k}$ and $R_k |0\rangle_R = 0$, $L_k |0\rangle_L = 0$

or

Introduction

$$|\Phi(u)
angle = \mathcal{N} \exp\left(-rac{1}{2}\int dk\,\Phi_k(u)\,\,a_k^\dagger a_{-k}^\dagger\,
ight) |0
angle_R|0
angle_L$$

with
$$\Phi_k(u) = \langle \Phi(u) | R_k L_k | \Phi(u) \rangle = \int_0^u d\hat{u} \, g_k(\hat{u})$$

cMERA Coherent State Formulation

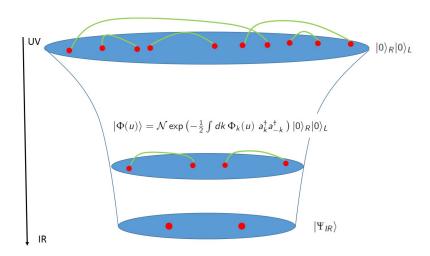
$$|\Phi(u)\rangle = \propto \prod_{|k| \le \Lambda e^{-u}} \exp\left(\Phi_k(u) \ a_k^{\dagger} a_{-k}^{\dagger}\right) |0\rangle_R |0\rangle_L$$

$$\times \prod_{|k| > \Lambda e^{-u}} |\Psi_{IR}\rangle$$

and $\Phi_k(u) = \langle \Phi(u) | R_k L_k | \Phi(u) \rangle \sim \text{'condensate'}.$

Continuous Entanglement Renormalization. cMERA.

cMERA Coherent State Formulation



Continuous Entanglement Renormalization, cMERA,

cMERA Coherent State Formulation. Final Remark

• Proposal for $|\Psi_{IR}\rangle$ as the Dirichlet boundary state (Miyaji et al 2015)

$$|\Psi_{IR}
angle \equiv |B
angle = \exp\left(-rac{1}{2}\int\,dk\,\,a_k^\dagger\,a_{-k}^\dagger
ight)|0
angle_R|0
angle_L$$

- In these states the entanglement between the left and right moving modes LREE (see Digression below) is maximal so there is no real space entanglement.
- They appear in the worldsheet description of propagating strings in spacetimes with boundaries (D-branes).
- Interesting LREE computations on D-branes (Pando-Zayas et al, 2016)

cMERA & Emergent space-time

Is it possible to 'see' an emergent spacetime from the Entanglement Renormalization of the wavefunction?

cMERA Path Integral

Write the cMERA amplitude

$$G(u_F,u_{IR}) = \langle \Phi(u_F) | \mathcal{P} \, \exp \left(-i \int_{u_{IR}}^{u_F} \tilde{\mathcal{K}}(\hat{u}) \, d\hat{u} \right) | \Phi(u_{IR}) \rangle$$

as a SU(1,1) coherent state path integral.

By standard methods,

$$\mathcal{Z} = G(0, u_{IR}) = \int \mathcal{D}(\Phi, \bar{\Phi})(u) \, \exp\left(i \, S_{eff} \left[\Phi, \bar{\Phi}\right]\right)$$

cMERA Path Integral

$$\mathcal{Z} = \int \mathcal{D}(\Phi, \bar{\Phi})(u) \, \exp\left(-i \int \textit{dxdu} \, \left[B(\Phi, \bar{\Phi}) + \tilde{\mathcal{K}}(\Phi, \bar{\Phi})\right] \, e^{-u}\right)$$

with

$$B(\Phi, \bar{\Phi}) = \frac{1}{2i} \left(\bar{\Phi} \, \partial_u \Phi - \Phi \, \partial_u \bar{\Phi} \right)$$

$$\tilde{\mathcal{K}}(\Phi, \bar{\Phi}) = \langle \Phi(u) | \tilde{\mathcal{K}}(u) | \Phi(u) \rangle$$

$$S_{eff}\left[\Phi,\bar{\Phi}
ight]=-2\int dxdu\,\bar{\Phi}(u)\,\,e^{-u}\,\partial_u\Phi(u)$$

cMERA Path Integral

The coherent state description of cMERA for a free boson yields a natural geometric representation of the RG flow by means of a two dimensional metric on a manifold (u, x) given by

$$ds^2=g_{uu}du^2+e^{-2u}dx^2$$
 $g_{ab}=diag\left\{g_{uu},\ e^{-2u}
ight\}$ with
$$g_{uu}=g_k(u)^2$$

THE VARIATIONAL PARAMETER $\Phi_k(u)$ of CMERA

$$\Phi_k(u) = \left[-\frac{1}{4} \log \frac{k^2 + m^2}{\Lambda^2 + m^2} \right]_{k = \Lambda, 2^{-u}} = -\frac{1}{4} \log \frac{e^{-2u} + \bar{m}^2}{1 + \bar{m}^2}$$

cMERA Path Integral

is obtained by

$$\frac{\delta \mathcal{E}}{\delta \Phi_k} = \frac{\delta}{\delta \Phi_k} \left\langle \Psi_{IR} | \mathcal{H}(u_{IR}) | \Psi_{IR} \right\rangle = 0$$

where $\mathcal{H}(u_{IR})$ is the hamiltonian density of the boson theory at the length scale u_{IR} .

Then it is straightforward to obtain

$$g_k(u) = \partial_u \Phi_k(u) = \frac{1}{2} \frac{e^{-2u}}{(e^{-2u} + \bar{m}^2)}$$

with $\bar{m} = m/\Lambda \ll 1$

cMERA Path Integral

$$e^{-u}\partial_u\Phi_k(u)=\sqrt{g_{uu}}e^{-u}=\sqrt{g}$$
 with $\sqrt{g}=\det\,g_{ab}$

Thus one may formally write

$$S_{eff}[\Phi,g] = rac{1}{4} \int d^2\sigma \, \sqrt{g} \, \mathcal{R}^{(2)}\Phi(u)$$

 $\mathcal{R}^{(2)} = -8$ scalar curvature of the metric tensor g_{ab}

In JHEP09(2015)002 it is shown how $\Phi(u)$ is related with the **EE** of the left and right moving modes at scale u needed to create $|\Phi(u)\rangle$.

Digression: Left-Right Entanglement Entropy

CMERA as a scale-dependent Bogoliubov transformation

The state $|\Phi(u)\rangle$ is anihilated by:

$$b_k(u) = A_k(u) a_k + B_k(u) a_k^{\dagger}$$
 i.e. $b_k(u) |\Phi(u)\rangle = 0$

with

$$A_k(u) = \cosh \Phi_k(u)$$
 $B_k(u) = -\sinh \Phi_k(u)$

Digression: Left-Right Entanglement Entropy

Now, we trace-out the left-moving modes of $|\Phi(u)\rangle$,

$$\rho_k^R(u) = Tr_{[L]} \left[|\Phi(u)\rangle \langle |\Phi(u)| \right] = \sum_n \gamma_k(u)^n (1 - \gamma_k(u)) |n_R\rangle \langle n_R|$$

with

$$\gamma_k(u) = \left[rac{B_k(u)}{A_k(u)}
ight]^2 = \left(anh \Phi_k(u)
ight)^2 \quad |n_R
angle = rac{1}{\sqrt{n_R!}} \left(a_k^\dagger
ight)^{n_R} |0
angle_R$$

Digression: Left-Right Entanglement Entropy

The reduced density matrix is diagonal of the form

$$\rho_k^R(u) = (1 - \gamma_k(u)) \text{ diag } (1, \gamma_k(u), \gamma_k(u)^2, \gamma_k(u)^3 \cdots)$$

and can be written as

$$\rho_k^R(u) = e^{-\beta \mathcal{H}_{ent}(u)}$$

with $\beta=2\pi$ and $\mathcal{H}_{ent}(u)=\varepsilon_k(u)\,a_k^\dagger a_k$ known as the entanglement hamiltonian, where

$$\varepsilon_k(u) = -\frac{1}{\beta} \log \gamma_k(u)$$

Digression: Left-Right Entanglement Entropy

The LREE, which amounts to the Von Neumann entropy

$$S_k(u) = -Tr[\rho_k^R(u)\log \rho_k^R(u)],$$

can be written as

$$S_k(u) = -\frac{\gamma_k(u)}{1 - \gamma_k(u)} \log \gamma_k(u) - \log(1 - \gamma_k(u))$$

and

$$\partial_u S_k(u) \approx -2 g_k(u)$$

in the limit of $\gamma \approx 1$. Thus,

$$g_{uu} \propto (\partial_u S_k(u))^2$$

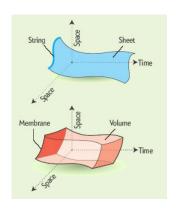
Closed Bosonic String Action

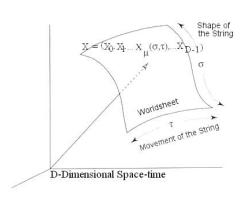
The worldsheet action for a closed bosonic string in a curved background

$$S_{ws} = rac{1}{4\pilpha'}\int_{\Sigma}d^2\sigma\sqrt{g}\left[g^{ab}G_{\mu
u}(X)\partial_aX^{\mu}\partial_bX^{
u}
ight] + \ rac{1}{4\pi}\int_{\Sigma}d^2\sigma\sqrt{g}\mathcal{R}^{(2)}\Phi(X)$$

where σ , g_{ab} and $\mathcal{R}^{(2)}$ are coordinates, metric and scalar curvature on the world-sheet respectively; $X^{\mu}(\sigma)$ denote target space coordinates with $\mu=0\cdots D-1$ and D the dimension of the target spacetime, $G_{\mu\nu}(X)$ is the target spacetime metric and $\Phi(X)$ is the dilaton field.

Closed Bosonic String Action





Closed Bosonic String Action

$$\label{eq:Sws} S_{ws} = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \sqrt{g} \left[g^{ab} G_{\mu\nu}(X) \partial_a X^{\mu} \partial_b X^{\nu} + \alpha' \mathcal{R}^{(2)} \Phi(X) \right]$$

Can be understood as a theory of 2D gravity (g_{ab}) coupled to conformal matter $(X^{\mu}(\sigma))$ with coupling constants $G_{\mu\nu}(X)$ and $\Phi(X)$

To impose this theory to be a 2D conformal theory on the 2D world-sheet, the trace of Energy-Momentum tensor T_{ab} on the world-sheet must vanish.

Background Fields E.O.M's

This amounts to impose that the Weyl anomaly β -functions,

$$\frac{\beta^{\Phi}}{\alpha'} = \frac{D-26}{6\alpha'} + \frac{1}{2} \left[4(\nabla_{\mu}\Phi)^2 - 2\nabla^2\Phi - \mathcal{R} \right] = 0$$

$$\beta_{\mu\nu}^{\mathsf{G}} = \mathcal{R}_{\mu\nu} + 2\nabla_{\mu}\nabla_{\nu}\Phi = 0$$

 $abla_{\mu}$ and \mathcal{R} are the target spacetime covariant derivative and the scalar curvature respectively.

The vanishing of $\beta^{G}_{\mu\nu}$ and β^{Φ} leads to effective equations of motion for the background fields $G_{\mu\nu}$ and Φ .

Non Trivial Solutions. Linear Dilaton Background

A consistent background solution to the equations of motion for arbitrary D consists in a flat target spacetime and a linear dilaton,

$$G_{\mu
u}(X)=\eta_{\mu
u}$$
 $\Phi(X)=V_{\mu}X^{\mu}$ $V_{\mu}V^{\mu}=rac{26-D}{12lpha'}=Q^2$

For $D < D_{crit} = 26$, the dilaton gradient is spacelike.

2D String Theory Linear Dilaton Solution.

2D String Theory. Linear Dilaton Background

2D String Theory: the worldsheet theory is Liouville theory + c = 1 conformal matter. It is considered the baby cousin of AdS/CFT (Klebanov, Ginsparg-Moore, Polchinski)

We consider the case for D=2 and $\Phi(X)$ lying along X^1 , i.e.,

$$\Phi(X) = Q X^1; \quad Q^2 = 2/\alpha'.$$

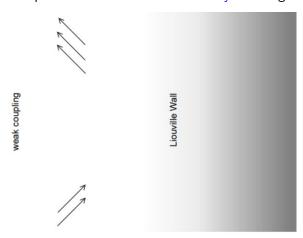
• The strength of the string interactions varies as a function of the X^1 coordinate as

$$g_{eff} = e^{\Phi(X)} = e^{QX^1}$$

• in the $X^1 \to \infty$ region of the target spacetime g_{eff} diverges and string perturbation theory fails.

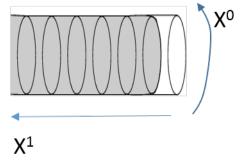
2D String Theory. Linear Dilaton Background

Two dimensional spacetime with dilaton and tachyon backgrounds



2D String Theory Linear Dilaton Background

• The geometry seen by the propagating string is a two dimensional flat spacetime with a dilaton linearly varying along its X^1 direction.



cMERA Linear Dilaton Background

May the cMERA action S_{eff} be interpreted as the dilaton term of the worldsheet action? Let us recall the variational solution

$$\Phi(u) = -\frac{1}{4} \log \frac{e^{-2u} + \bar{m}^2}{1 + \bar{m}^2}$$

When $\bar{m}=0$,

$$\Phi(u) = Q u$$

with Q = 1/2 and $g_{uu} = 1/4$.

• Choosing the target spacetime coordinates as $X^{\mu}=(X^0,X^1)=(x,u)$ and $G_{\mu\nu}(X)=diag(1,g_{uu}),~S_{eff}$ reads as,

$$S_{ ext{eff}} = rac{1}{4} \int d^2 \sigma \, \sqrt{g} \, \mathcal{R}^{(2)} Q \, X^1$$

cMERA Linear Dilaton Background. Comments

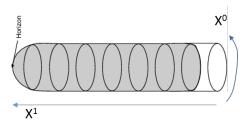
- When $\bar{m}=0$, it is suggested that the cMERA effective action describes a linear dilaton background with Q=1/2 .
- The consistency condition $Q^2 = 2/\alpha'$ imposes that one has to work in units where $\alpha' \equiv 8$.
- This amounts to define a fiducial string interaction strength $g_0^2 \sim \alpha'$ which landmarks the regime $g_{eff}^2 = e^{X^1} \ll g_0$ where perturbation theory is valid.

cMERA Linear Dilaton Background. Comments

- In CMERA parlance, states $|\Phi(X^1)\rangle$ close to the UV point, (entanglement at all length scales) \Longrightarrow regions where perturbation theory is valid.
- Meanwhile, states located at the IR region (those that have been devoid of their entanglement at small length scales)
 strong coupling region.
- The inverse string coupling limits the number of the left-right moving entangled modes at the scale u to those with momentum $k \leq \Lambda g_{eff}^{-2}$.

Two Dimensional Black Hole.

- String theory also describes strong gravitational fields like black holes. A non trivial solution is the 2D black hole (Witten 91).
- Here, the spacetime manifold parametrizes the coset SL(2,R)/U(1).
- The spacetime geometry seen by the string looks like a cigar.



Two Dimensional Black Hole.

The non-trivial fields in spacetime are the metric and the dilaton given by,

$$G_{11}(X) = \frac{1}{4} \tanh^2 \left(2QX^1 + \log M \right)$$
 $\Phi(X) = -\frac{1}{2} \log 2M - \frac{1}{2} \log (2QX^1 + \log M)$

with $G_{00}(X)=1$ and M being a mass constant. As $M\to 0$, the background is the linear dilaton which is also recovered when $X^1\to 0$.

cMERA Two Dimensional Black Hole.

Now we look at the CMERA variational solution

$$\Phi(u) = -\frac{1}{4} \log \frac{e^{-2u} + \bar{m}^2}{1 + \bar{m}^2}$$

when $\bar{m} \neq 0$. If we choose $M = \bar{m}$ and the target spacetime metric and coordinates as before, as long as $X^1 < -\log \bar{m}$, one may write

$$\textit{G}_{11}(\textit{X}) = \frac{1}{4} \tanh^2 \left(2\textit{QX}^1 + \log \ \bar{\textit{m}} \right) \left(= \textit{g}_{\textit{uu}}(\textit{u}) \right)$$

and

$$\Phi(X^1) = -\frac{1}{2} \log 2\bar{m} - \frac{1}{2} \log(2QX^1 + \log \bar{m})$$

cMERA Two Dimensional Black Hole.

• The scalar curvature of g_{ab} ,

$$\mathcal{R}^{(2)} = -8 + 8\bar{m}^4 e^{4X^1}$$

remains constant along the X^1 coordinate before it exponentially vanishes when reaching $X^1_{\bullet} \sim -\log \bar{m}$.

• Breakdown of the linear dilaton behaviour at X^1_{\bullet} where,

$$\Phi(X^1_{\bullet}) \approx -\frac{1}{2} \log \bar{m}$$

and G_{11} changes its sign, which might be interpreted by the presence of an horizon.

• Here, the effective string coupling $g_{eff}^2=e^{2QX_{\bullet}^1}\sim 1/\bar{m}\gg g_0^2$.

Conclusions.

Introduction

- The cMERA of different ground states correspond to non-trivial backgrounds of 2D string theory.
- Insights on how the background fields $G_{\mu\nu}$ and Φ arise from the structure of the LREE.
- How general is the idea that gravitational systems, such as black holes or other cosmological spaces are represented by composite entities of microscopic entangled quantum constituents?
- Excited states, dynamical processes (covariant formulation of cMERA), interacting and/or chiral theories, cMERA in higher dimensions?

Conclusions

