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Emergence in Lattice Gauge Theory
1. Lorentz symmetry. The lattice
breaks the continuous relativistic
symmetry, however for momenta
small enough, we recover
E2 = |~p|2 + m2 (example in PRD
92, 014024 (2015) for B → πeν)  0.9
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22. Conformal symmetry. The 2D

lattice O(2) model has a conformal
(KT, superfluid) phase reached for
large enough chemical potential or
hopping parameter, where the
entanglement entropy scales like
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3. Local gauge symmetry. The Fermi-Hubbard model at half filling has
an unexpected local symmetry (Anderson et al.). At strong coupling,
there is a clear analogy with a SU(2) lattice gauge theory with
fermions (Fradkin et al.). See Ch. 9 of X.-G. Wen’s QFT book.
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Content of the talk

1 QCD motivations, overview
2 The Tensor Renormalization Group (TRG) method

Exact blocking formulas (spin and gauge lattice models)
Fixed points and exponents (Ising)
Chemical potential (O(2), superfluid-BKT phase)
Entanglement entropy (O(2): c = 1 CFT)
The Polyakov’s loop in the Abelian Higgs model
The time continuum limit

3 Proposals for quantum simulators for 2D abelian models using
optical lattices

4 Conclusions
5 Extra topics

Finite size scaling (Fisher’s zeros) for spin models and SU(3) with 4
and 12 flavors
Emergence of local symmetries in Fermi Hubbard models
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Important Lattice QCD problems/questions

A common problem to practical lattice QCD calculations:
large box size/small lattice spacing = many lattice sites.
The problem gets more acute for many flavors with small masses
(composite Higgs models?). Existence of non-trivial IR fixed
points for enough flavors (e.g. SU(3) with 12 massless quarks)?
What are the remnants of the expected CFT on the lattice? Is
there a topological picture? Again, lattices used in numerical
calculations always seem too small.
Finite density calculations: sign problem (MC calculations with
complex actions are only possible if the imaginary part is small
enough to be handled with reweighing).
Real time evolution: requires detailed information about the
Hamiltonian and the states which is usually not available from
conventional MC simulations at Euclidean time.
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Strategies

These questions can be addressed by using two parallel and
complementary approaches: renormalization group (blocking)
methods and quantum simulations.
We start with simple models and work our way up on the “lattice
ladder" of models (2D Ising, 2D sigma models, 3D U(1) gauge
theory , ...).
We have made good progress with a new blocking method (TRG)
for abelian models in 1+1 dimensions and hope to convince cold
atom experimentalists to quantum simulate Hubbard models
expected to share important features with these abelian models.
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The Tensor Renormalization Group (TRG) Method

Exact blocking (spin and gauge, PRD 88 056005)
Applies to many lattice models: Ising model, O(2) model, O(3)
model, Principal chiral models, Abelian and SU(2) gauge theories
Solution of sign problems (PRD 89, 016008)
Can be checked with (worm) sampling methods (Prokofiev,
Svistunov, Banerjee, Chandrasekharan, Gattringer ...)
Critical exponents (Y.M. PRB 87, 064422, Kadanoff et al. RMP 86)
Connects easily to the Hamiltonian picture and provides spectra
Used to design quantum simulators: O(2) model with a chemical
potential (PRA 90, 063603), Abelian Higgs model (PRD 92
076003) on optical lattices
Schwinger model: Y. Shimizu and Y. Kuramashi (PRD 90, 074503
and 014508)
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Block Spining in Configuration Space is difficult!

A BB

B

B

Ising 2: Step 1, Step 2, ...write a formula for the blocked Hamiltonian!
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TRG: simple and exact! (Levin, Wen, Xiang ..)

Ising model: for each link, we use the Z2 character expansion:

exp(βσ1σ2) = cosh(β)(1 +
√

tanh(β)σ1
√

tanh(β)σ2) =

cosh(β)
∑

n12=0,1

(
√

tanh(β)σ1
√

tanh(β)σ2)n12 .

Regroup the four terms involving a given spin σi and sum over its two
values ±1. The results can be expressed in terms of a tensor: T (i)

xx ′yy ′
which can be visualized as a cross attached to the site i with the four
legs covering half of the four links attached to i . The horizontal indices
x , x ′ and vertical indices y , y ′ take the values 0 and 1 as the index n12.

T (i)
xx ′yy ′ = fx fx ′ fy fy ′δ

(
mod[x + x ′ + y + y ′,2]

)
,

where f0 = 1 and f1 =
√

tanh(β). The delta symbol is 1 if
x + x ′ + y + y ′ is zero modulo 2 and zero otherwise.
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New form of the partition function:

Z = (cosh(β))2V Tr
∏

i T (i)
xx ′yy ′ .

Tr means contractions (sums over 0 and 1) over the link indices.
Reproduces the closed paths of the HT expansion.

Important feature of the TRG blocking:
It separates the degrees of freedom inside the block (integrated over),
from those kept to communicate with the neighboring blocks.

Graphically :
(isotropic blocking)
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TRG Blocking defines a new rank-4 tensor T ′XX ′YY ′

Exact blocking formula (isotropic):

T ′X(x1,x2)X ′(x ′1,x
′
2)Y (y1,y2)Y ′(y ′1,y

′
2) =∑

xU ,xD ,xR ,xL

Tx1xUy1yLTxUx ′1y2yR
TxDx ′2yRy ′2

Tx2xDyLy ′1
,

where X (x2, x2) is a notation for the product states e. g. ,
X (0,0) = 1, X (1,1) = 2, X (1,0) = 3, X (0,1) = 4.

The partition function can again be written as

Z = Tr
∏
2i

T ′(2i)
XX ′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the lattice
spacing of the original lattice.
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Anisotropic blocking and projection

Numerical calculations require truncations in the sum over the tensor
indices. The truncation method of T. Xiang et al.
(PhysRevB.86.045139) relies on an anisotropic blocking involving two
sites. This provides a new rank-4 tensor:

M<ij>
X(x1,x2)X ′(x ′1x ′2)yy ′ =

∑
y ′′

T (i)
x1,x ′1,y ,y

′′T
(j)
x2x ′2y ′′y ′ ,

which can be put in a canonical form by using a Higher Order Singular
Value Decomposition defined by a unitary transformation on each of
the indices. Only the d highest eigenvalues of the “metric" GXX ′

GXX ′ =
∑

X ′′yy ′
MXX ′′yy ′M∗X ′X ′′yy ′

are kept. This generates a new tensor with d states associated with
each of the 4 indices.
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Two state approximations (2D Ising)
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Figure: The four eigenvalues of GXX ′ at the first step, on a logarithmic scale,
as a function of t = thβ. After iterations the gap sharpens as if going to
smaller t for t < tc or larger t for t > tc . (YM, PRB 87, 064422)
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Accurate exponents from approximate tensor
renormalizations (YM, Phys. Rev. B 87, 064422 2013)

For the Ising model on square lattice, several truncation methods
sharply singles out a surprisingly small subspace of dimension
two.
In the two states limit, the transformation can be handled
analytically yielding a value 0.964 for the critical exponent ν much
closer to the exact value 1 than 1.338 obtained in Migdal-Kadanoff
approximations. Alternative blocking procedures that preserve the
isotropy can improve the accuracy to ν = 0.987 and 0.993
respectively.
Two states for 3D Ising: ν = 0.74 (not so good).
Few states improvement not well-understood.
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More than two states

When a few more states are added, the quality of the approximation
does not immediately improve. One first observes oscillations, false
bifurcations, approximate degeneracies. Same observations were
made by Leo Kadanoff (1937-2015) and collaborators.

�
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�
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� ���� � �

2 8 14 20
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1.05

χ	


xT 

Figure: Thermal x-value 1/ν versus the truncation size χ in various
calculations summarized in by Efi Efrati, Zhe Wang, Amy Kolan, Leo P.
Kadanoff, Rev. Mod. Phys. 86, 647 May 2014
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Leo Kadanoff (1937-2015)

Figure:
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Kaufman exact expression of the transfer matrix for
Ising 2 and TRG recursion (Y. M. work in progress)

For a finite spatial size Nx , Kaufman uses a Clifford algebra with
2 ∗ Nx gamma-matrices (2Nx dimensional matrices). The transfer
Matrix is a representation of product of rotations in 2Nx
dimensions which can be diagonalized (Phys. Rev. 76, 1232
(1949)).
“Chirality": L-R states (γ5 → Γ1Γ2 . . . Γ2Nx ) is even-odd in TRG
In progress: exact Grassmann representation of the transfer
matrix with recursion relations, ...
CFT at βc : is there a remnant of z → −1/z transformation on a
finite lattice? Can we obtain the continuum expression of Itzykson
et al. for the correlation functions (in terms of modular functions,
see Ph. de Forcrand and O. Akerlund 1410.1178) from the fixed
point? S. Smirnov work on CFT for the critical Ising model, Field
medal 2010, may help.
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The O(2) model with a real chemical potential µ

Z =

∫ ∏
(x ,t)

dθ(x ,t)

2π
e−S.

S = − βt̂

∑
(x ,t)

cos(θ(x ,t+1) − θ(x ,t) − iµ)

− βx̂

∑
(x ,t)

cos(θ(x+1,t) − θ(x ,t)).

Z =
∑
{n}

∏
(x ,t)

In(x,t),x̂ (βx̂ )In(x,t),̂t
(βt̂ )e

µn(x,t),̂t

× δn(x−1,t),x̂ +n(x,t−1),̂t ,n(x,t),x̂ +n(x,t),̂t
.

For real µ the action is complex, β = 1/g2
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Worm configurations
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Figure: Allowed configuration of {n} for a 4 by 32 lattice. The uncovered links
on the grid have n=0, the more pronounced dark lines have |n|=1 and the
wider lines have n=2. The dots need to be identified periodically. The time
slice 5, represents a transition between |1100〉 and |0200〉. Statitical sampling
of these configurations (worm algorithm) has been used to check the TRG
calculations.
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TRG approach of the transfer matrix

The partition function can be expressed in terms of a transfer matrix:

Z = TrTLt .

The matrix elements of T can be expressed as a product of tensors
associated with the sites of a time slice (fixed t) and traced over the
space indices (PhysRevA.90.063603)

T(n1,n2,...nLx )(n′1,n
′
2...n

′
Lx

) =
∑

ñ1ñ2...ñLx

T (1,t)
ñLx ñ1n1n′1

T (2,t)
ñ1ñ2n2n′2...

. . .T (Lx ,t)
ñLx−1

ñLx nLx n′Lx

with

T (x ,t)
ñx−1ñx nx n′x

=
√

Inx (βt̂ )In′x (βt̂ )Iñx−1
(βx̂ )Iñx (βx̂ )e(µ(nx +n′x ))δñx−1+nx ,ñx +n′x

The Kronecker delta function reflects the existence of a conserved
current, a good quantum number (“particle number" ).
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Coarse-graining of the transfer matrix

Figure: Graphical representation of the transfer matrix (left) and its
successive coarse graining (right). See PRD 88 056005 and PRA 90, 063603
for explicit formulas.
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Phase diagram
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Figure: Mott Insulating “tongues" and Thermal entropy in a small region of
the β − µ plane. Intensity plot for the thermal entropy of the classical XY
model on a 4× 128 lattice in the β-µ plane. The dark (blue) regions are close
to zero and the light (yellow ochre) regions peak near ln 2 (level crossing).
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O(2) Gap (Nx = 4 illustration)

BKT

µc(n = 4)

µc(n = −4)

µc(n = 3)

µc(n = −3)

µc(n = 2)

µc(n = −2)

µc(n = 1)

µc(n = −1)

BKT

Mott
N = 1

BKT

Mott
N = -1

µ

βspin = 2κ
Mott

N = 0

SF

SF

0

Figure: Schematic description of the jumps in thermal entropy (level crossing)
for Nx = 4 in the β − µ plane.
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Entanglement entropy SE (PRE 93, 012138 (2016))

We consider the subdivision of AB into A and B (two halves in our
calculation) as a subdivision of the spatial indices.

ρ̂A ≡ TrB ρ̂AB; SE = −
∑

i

ρAi ln(ρAi ). (1)

We use blocking methods until A and B are each reduced to a single
site.

Figure: The horizontal lines represent the traces on the space indices. There
are Lt of them, the missing ones being represented by dots. The two vertical
lines represent the traces over the blocked time indices in A and B.
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The fine structure for Lx = 4, Lt = 256
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Figure: Entanglement entropy (EE, blue), thermal entropy (TE, green) and
particle density ρ (red) versus the chemical potential µ . The thermal entropy
has Lx = 4 peaks culminating near ln 2 ' 0.69; ρ goes from 0 to 1 in Lx = 4
steps and the entanglement entropy has an approximate mirror symmetry
near half fillings where it peaks. (Lx=Ns in other figures).
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Similar features for Lx = 16 with Lt = 1024
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Lx=16,
Lt=1024

Figure: Entanglement entropy (EE, blue), thermal entropy (TE, green) and
particle density ρ (red). The thermal entropy has Lx = 16 peaks culminating
near ln 2 ' 0.69; ρ goes from 0 to 1 in Lx = 16 steps and the entanglement
entropy has an approximate mirror symmetry near half fillings where it peaks.
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Cardy scaling : c=1?
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Figure: Entanglement entropy for O(2), µ = 0, βspin = 1.2. The fit is 0.692 +
0.331 Log(L). Cardy CFT prediction is cst .+ (c/3)Log(L). Data from Li-Ping
Yang.
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Larger Ns requires larger Dbound
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Figure: Entanglement entropy for O(2), µ = 0. Data from J. Unmuth-Yockey.
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The Abelian Higgs model on a 1+1 space-time lattice

a.k.a. lattice scalar electrodynamics. Field content:
• Complex (charged) scalar field φx = |φx |eiθx on space-time sites x
• Abelian gauge fields Ux ,µ = exp iAµ(x) on the links from x to x + µ̂
• Fµν appears when taking products of U ’s around an elementary
square (plaquette) in the µν plane
• Notation for the plaquette: Ux ,µν = ei(A(x)µ+A(x+µ̂)ν−A(x+ν̂)µ−A(x)ν)

• βpl. = 1/e2 and κ is the hopping coefficient

S = −βpl.
∑

x

∑
ν<µ

ReTr [Ux ,µν ] + λ
∑

x

(
φ†xφx − 1

)2
+
∑

x

φ†xφx

− κ
∑

x

d∑
ν=1

[
eµch.δ(ν,t)φ†xUx ,νφx+ν̂ + e−µch.δ(ν,t)φ†x+ν̂U†x ,νφx

]
.

Z =

∫
Dφ†DφDUe−S

Unlike other approaches (Reznik, Zohar, Cirac, Lewenstein, Kuno,....)
we will not try to implement the gauge field on the optical lattice.
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Gauge-invariant effective action

At the lowest order of the strong-coupling expansion we set βpl. = 0
(we neglect the plaquette interaction) and carry out the DU (gauge)
integration. The effect of the plaquette can be restored order by order.
We obtain an effective theory

Z =

∫
Dφ†DφDUe−S =

∫
DMe−Seff .(M)

for the composite (gauge invariant) field Mx = φ†xφx with an effective
action

Seff =
∑
<xy>

(−κ2MxMy + (1/4)κ4(MxMy )2)

−2κ4(I1(βpl.)/I0(βpl.))
∑

pl(xyzw)

MxMyMzMw + O(κ6)

For a similar approach with fermions see “Lattice gauge theory without
link variables" by H. Vairinhos and P. de Forcrand JHEP 1412 038.
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Monte Carlo checks of the hopping expansion and
plaquette corrections for Lφ = 〈Re{φ†xUx ,ν̂φx+ν̂}〉
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Figure: Lφ at βpl = 20 for λ = 0.05 and λ = 0.1 as function of κ compared
with the hopping expansion at βpl =∞ at O(κ3) and O(κ5).
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The large λ limit

λ→∞, |φx | is frozen to 1, or in other words, the Brout-Englert-Higgs
mode becomes infinitely massive.
We are then left with compact variables of integration in the original
formulation (θx and Ax ,ν̂) and the Fourier expansions
exp[2κν̂cos(θx+ν̂−θx +Ax ,ν̂)] =

∑∞
n=−∞ In(2κν̂)exp(ın(θx+ν̂−θx +Ax ,ν̂))

leads to expressions of the partition function in terms of discrete sums.
We use the following definitions:

tn(z) ≡ In(z)/I0(z)

tn(0) = δn,0.

For z non zero and finite, we have 1 > t0(z) > t1(z) > t2(z) > · · · > 0
In addition for sufficiently large z,

tn(z) ' 1− n2/(2z)
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Tensor Renormalization Group formulation

As in PRD.88.056005 and PRD.92.076003, we attach a B(�) tensor to
every plaquette

B(�)
m1m2m3m4

=

{
tm�(βpl), if m1 = m2 = m3 = m4 = m�

0, otherwise.

a A(s) tensor to the horizontal links

A(s)
mupmdown

= t|mdown−mup|(2κs),

and a A(τ) tensor to the vertical links

A(τ)
mleft mright

= t|mleft−mright |(2κτ ) eµ.

The quantum numbers on the links are completely determined by the
quantum numbers on the plaquettes
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Z = Tr [
∏

T ]

Z = (I0(βpl)I0(2κs)I0(2κτ ))V ×

Tr

∏
h,v ,�

A(s)
mupmdown

A(τ)
mright mleft

B(�)
m1m2m3m4

 ∝ Tr(
√
BA
√
B)Nτ .

The traces are performed by contracting the indices as shown

B

B

A(τ)

A(τ)

A(s) A(s)

B

B

Figure: The basic B and A tensors (in brown and green, respectively, colors
online). The A(s) are associated with the vertical tensors, and the horizontal
(spatial) links of the lattice. The A(τ) are associated with the horizontal
tensors, and the vertical (temporal) links of the lattice.
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Remarks

The plaquette quantum numbers are the dual variables
If we impose periodic boundary conditions on the plaquettes, we
can only have neutral states (Gauss law)
We will probe the charged sector by introducing Polyakov loops
For related questions in QED, see arXiv:1509.01636, “Charged
hadrons in local finite-volume QED+QCD with C* boundary
conditions" by Biagio Lucini, Agostino Patella, Alberto Ramos, and
Nazario Tantalo
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Polyakov loop

Polyakov loop, a Wilson line wrapping around the Euclidean time
direction: 〈Pi〉 = 〈

∏
j U(i,j),τ 〉; the order parameter for deconfinement.

With spatial periodic boundary condition, the insertion of the Polyakov
loop (red) forces the presence of a scalar current (green) in the
opposite direction (left) or another Polyakov loop (right).

0 01

0 01

0 01

0 01

0 01

1

1

1

1

1

0

0

0

0

0

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

In the Hamiltonian formulation, we add − Ỹ
2 (2(L̄z

i? − L̄z
(i?+1)− 1) to H.
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Polyakov loop: Numerical calculations
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Polyakov loop for (1+1)D Abelian Higgs model using the TRG method
(Left, Judah Unmuth-Yockey) and the Hamiltonian method (Right, Jin
Zhang). Using logarithmic resolution, there is no sharp transition on
the left (only exponential decay due to the gauge fields).
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Data collapse for Polyakov loop

Guesses: − ln(P) ' C + Nτ (∆E); ∆E ' A/Ns + Bg2Ns + ...);
Data Collapse: Ns∆E = F (g2N2

s )?
Recent numerical calculations by J. Unmuth-Yockey give support to
this idea
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Data collapse for Polyakov loop II

Figure: The increase in sharpness with volume makes it look like an order
parameter. Numerical calculations by J. Unmuth-Yockey.
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The time continuum limit and the energy spectrum

In the limit κs = 0, and if both κτ and βpl become large, at leading
order in the inverse of these large parameters, the eigenvalues of T are

λ(m1,m2,...mNs ) =

1− 1
2

[(
1
βpl

(m2
1 + m2

2 + · · ·+ m2
Ns

) +

1
2κτ

(m2
1 + (m2 −m1)2 + . . .

· · ·+ (mNs −mNs−1)2 + m2
Ns

)]

In the case 1 << βpl << κτ , we set the scale with the (large) gap
energy Ũg ≡ 1/aβpl .

For 1 << κτ << βpl , we tend to have strings of constant m but for
large volume, the plaquette energy can take over (confinement).
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The Hamiltonian for 1 << βpl << κτ and m = 0,±1

We now use the spin-1 approximation (m = 0,±1 or n = 0,±1) to
discuss the two cases.

For 1 << βpl << κτ , We use the notation L̄x
(i) to denote the first

generator of the spin-1 rotation algebra at the site (i). The notation L̄ is
used to emphasize that the spin is related to the m quantum numbers
attached to the plaquettes, not to the charges n on the time links.

We define Ỹ ≡ (βpl/(2κτ ))Ũg and X̃ ≡ (βplκs
√

2)Ũg which are the
(small) energy scales. The final form of the Hamiltonian H̄ for
1 << βpl << κτ is

H̄ =
Ũg

2

∑
i

(
L̄z

(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))2 − X̃
∑

i

L̄x
(i) .
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The limit βpl . →∞, λ→∞: the O(2) model

In the limit βpl. →∞, λ→∞, we recover the Hamiltonian for the spin-1
approximation of the O(2) model:

Ĥ =
Ũ
2

∑
i

(
L̂z

(i)

)2

−µ̃
∑

i

L̂z
(i) −

J̃
4

∑
i

(
L̂+

(i)L̂
−
(i+1) + L̂−(i)L̂

+
(i+1)

)
,

with the now dimensionful quantities

Ũ ≡ 1
2κτa

, µ̃ ≡ µ

a
, J̃ ≡ 2κs

a
,

and a the time lattice spacing.
The operators L̂z

(i) are associated with the time links.
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Can lattice gauge theorists learn about Quantum
Chromodynamics (QCD) at finite density and real time
from optical lattice experiments?

The Fermilab Lattice Gauge Theory cluster (left); An optical lattice
experiment (once used to observe a “Higgs mode") at MPQ (right)

Yannick Meurice (U. of Iowa) Computing near Conformality CERN, June 27 2016



Quantum Simulators

No sign problems
Real time evolution
So far the linear sizes are of order 100-200 and are expected to
reach 1000 soon.
Can we do interesting experiments with small lattices?
Finite temperature at infinite size (Euclidean time)∼ finite size at
zero temperature (experiment)?
Many interesting proposals based on the Kogut-Susskind
Hamiltonian and quantum rotors (Reznik, Zohar, Cirac, Wiese,
Lewenstein, Kuno,....).
Our approach is based on the tensor formulation of lattice gauge
theory and is manifestly gauge invariant.
So far, the remarkable theory-experiment reached for the
Bose-Hubbard model is just a source of inspiration in the context
of lattice gauge theory and a proof of principle is needed.
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Quantum simulators: main message

We have reformulated the lattice Abelian Higgs model (scalar
QED) in 1 space + 1 time dimension using the Tensor
Renormalization Group method
The reformulation is gauge invariant and connects smoothly the
classical Lagrangian formulation used by lattice gauge theorists
and the quantum Hamiltonian method used in condensed matter
Despite its simplicity, the model has a rich behavior (entanglement
entropy scaling like in Conformal Field Theory in the weak gauge
coupling limit, deconfinement at finite volume)
We propose to use Bose-Hubbard (BH) Hamiltonians with two
species as quantum simulators. Using degenerate perturbation
theory, we obtain effective Hamiltonians resembling those relevant
for the Abelian Higgs model
We would like to find realistic ways to implement these BH
Hamiltonians on optical lattices
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The (high) standards: Quantum Monte Carlo vs.
Experiment for the Bose-Hubbard model

Figure: From S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N.V.
Prokof’ev, B. Svistunov, M. Troyer Nature Phys. 6, 998-1004 (2010)
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Two species Bose-Hubbard (PRD 92 076003)

The two-species Bose-Hubbard Hamiltonian (α = a,b indicates two
different species, respectively) on square optical lattice reads

H = −
∑
〈ij〉

(taa†i aj + tbb†i bj + h.c.)−
∑
i,α

(µ+ ∆α)nαi

+
∑
i,α

Uα

2
nαi (nαi − 1) + W

∑
i

na
i nb

i +
∑
〈ij〉α

Vαnαi nαj

− (tab/2)
∑

i

(a†i bi + b†i ai)

with na
i = a†i ai and nb

i = b†i bi .
In the limit where Ua = Ub = U and W and µa+b = (3/2)U much larger
than any other energy scale, we have the condition na

i + nb
i = 2 for the

low energy sector. The three states |2,0〉, |1,1〉 and |0,2〉 satisfy this
condition and correspond to the three states of the spin-1 projection
considered above.
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Using degenerate perturbation theory

Heff = (
Va

2
− t2

a
U0

+
Vb

2
−

t2
b

U0
)
∑
〈ij〉

Lz
i Lz

j

+
−tatb
U0

∑
〈ij〉

(L+
i L−j + L−i L+

j ) + (U0 −W )
∑

i

(Lz
i )2

+ [(
pn
2

Va + ∆a −
p(n + 1)t2

a
U0

)− (
pn
2

Vb

+ ∆b −
p(n + 1)t2

b
U0

)]
∑

i

Lz
i − tab

∑
i

Lx
(i)

where p is the number of neighbors and n is the occupation (p = 2,
n = 2 in the case under consideration). L̂ is the angular momentum
operator in representation n/2.
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Matching the O(2) and BH spectra for large U

Matching: with the O(2) model, we need to tune the hopping amplitude
as tα =

√
VαU/2 and have J̃ = 4

√
VaVb, Ũ = 2(U −W ), and

µ̃ = −(∆a − Va) + (∆b − Vb).

O(2)

BH model

U=20000
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U=1.5 BH model

U=1
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Figure: O(2) and Bose-Hubbard spectra for L=2 (left) and L=4 (right).

Yannick Meurice (U. of Iowa) Computing near Conformality CERN, June 27 2016



Optical lattice implementation (PRA 90 06303)

The two-species: 87Rb and 41K Bose-Bose mixture where an
interspecies Feshbach resonance is accessible (W ).
Species-dependent optical lattice are used in boson systems,
which allows hopping amplitude of individual species to be tuned
to desired values.
The extended repulsion, Vα, is present and small when we
consider Wannier gaussian wave functions sitting on nearby lattice
sites (Mazzarella et al. 2006)

tatb

Ub UaW

Vb Va
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Matching Abelian Higgs model and BH spectra

Matching: ta = tb = 0, Va = Vb = −Ỹ /2, tab = X̃ ,
Ũp = 2(U −W + 2Va(b)), ∆a(b) = −2Va(b).

Figure: Abelian-Higgs model with X̃/ŨP = 0.1, Ỹ/ŨP = 0.1 and the
corresponding Bose-Hubbard spectra for L = 2 (top) and L = 4 (bottom).
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Optical lattice implementation

• Ladder structure

Figure: A ladder structure with a and b corresponding to the two sides of the
ladder (right).

• Two species -> hyperfine states?

• Polar molecules?

Yannick Meurice (U. of Iowa) Computing near Conformality CERN, June 27 2016



Conclusions

We have proposed a gauge-invariant approach for the quantum
simulation of the abelian Higgs model.
The tensor renormalization group formulation allows reliable
calculations of the phase diagram and spectrum.
Calculations of the entanglement entropy for the O(2) model in
the superfluid phase at increasing Nx are consistent with a CFT of
central charge 1. Scaling of truncation (how to increase Dbound
with the size) needs to be understood better.
Calculations of the Polyakov loop at finite Nx and small gauge
coupling shows an interesting behavior (finite volume
deconfinement, related to the KT transition of the limiting O(2)
model). Nice data collapse at weak gauge coupling.
We have proposed a Bose-Hubbard model that corresponds to
the spin-1 version and proposed an implementation on optical
lattices. We were able to match the spectra in the large U limit.
Thanks!
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3D gauge theories

A blocking procedure can be constructed by sequentially combining
two cubes into one in each of the directions (PRD 88 056005)

C
CB

�

B
�

B
�A

A

A

Figure: blocking procedure
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Other applications?

Abelian Higgs model with a topological term
Adding a topological term Stop = ı Θ

2π
∑

x ImU�,x to the (1+1)D
Abelian Higgs model, and in the limit κτ � β � κs as well as
β � Θ, we get:

Htop = H +
ŨPΘ

2π

∑
i

L̄z
i (2)

Abelian Higgs model in (2+1)D
In the limiit κτ � βτ � βs, κs

H2+1 = H2 −
βs

2a

∑
r

(L+
r ,x̂L+

r+x̂ ,ŷL−r+ŷ ,x̂L−r ,ŷ + h.c.) (3)

where H2 is the 2d version of the Hamiltonian obtained in (1+1)D
case, βs is the gauge coupling in x − y plane. To simulate the
quartic term, we need to go to the fourth order degenerate
perturbation theory for Bose Hubbard model.
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QCD with chemical potential on S1 × S3

Figure: From: Simon Hands, Timothy J. Hollowood, Joyce C. Myers, arxiv
1012.0192, Lattice 2010.
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Combining TRG and new perturbative methods?

The divergence of QFT perturbative series can be traced to the
large field configurations. For suitably chosen field cuts,
converging perturbative series provide good approximation of
results that can be obtained by independent numerical methods.
The method can be combined with blocking for the hierarchical
model. (YM, PRL 88, 141601 (2002)).
In many of the TRG calculations, the microscopic tensor is
constructed in terms of In(β) = 1

2π

∫ π
−π dθeβ cos(θ)+inθ. In the known

asymptotic expansions of the In(β), one adds tails of integration to
the compact range in order to get Gaussian integrals. Keeping the
range of integration finite leads to converging weak coupling
expansion (L. Li and YM PRD 71 054509 (2005)). Hopefully this
can be connected to resurgence ideas.
Understanding the connection between topology and the
perturbative expansion for the 1D O(2) model on a lattice is easy
(Poisson summation), but a challenging problem in 2D.
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The transfer matrix T of the AHM

B(m1,m2,...mNs )(m′1,m
′
2...m

′
Ns

) = tm1(2κτ )δm1,m′1
tm1(βpl)×

t|m1−m2|(2κτ )δm2,m′2
tm2(βpl)t|m2−m3|(2κτ ) . . .

tmNs
(βpl)tmNs

(2κτ )

Note that with this choice of open boundary conditions, the chemical
potential has completely disappeared. If we had chosen different m’s
at the end allowing a total charge Q inside the interval, we would have
an additional factor exp(µQ). We next define a matrix A as the product.

A(m1,m2,...mNs )(m′1,n
′
2...m

′
Ns

) =

t|m1−m′1|(2κs)t|m2−m′2|(2κs) . . . t|mNs−mN′s
|(2κs)

With these notations we can construct a symmetric transfer matrix T.
Since B is diagonal, real and positive, we can define its square root in
an obvious way and write the transfer matrix as

T =
√
BA
√
B
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The partition function

Z = (I0(βpl)I0(2κs)I0(2κτ ))V Tr
[
TNτ

]
Alternatively, we could diagonalize the symmetric matrix A and define
the (dual) transfer matrix

T̃ =
√
AB
√
A

The A and B matrices can be constructed by a recursive blocking
method similar to what we discuss in PhysRevD.88.056005.

B′m3m6M(m1,m2)M′(m′1,m
′
2) =∑

m4,m′1

Bm3m4m1m′1
A(τ)

m4m5Bm5m6m2m′2

A
′(s)
M(m1,m2)M′(m′1,m

′
2)

= A(s)
m1m′1

A(s)
m2m′2

Yannick Meurice (U. of Iowa) Computing near Conformality CERN, June 27 2016



Graphical representation of blocking

m3

m′
1

m1

m4 m5

m′
2

m2

m6

Figure: Part of the construction of the blocked B′ tensor. This shows the
contraction of the B and A(τ) tensors. The dashed lines are the links of the
original lattice.

m′
1 m′

2

m1 m2

Figure: Graphical representation of the blocking of the A tensors. The vertical
tensors are the A(s) and the dashed lines are the links of the original lattice.

One can continue taking the product of A(s) matrices until the desired
spatial size has been reached resulting in the matrix A.
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The Fermi-Hubbard model

Fermi-Hubbard model Hamiltonian:

H = −t
∑
〈i,j〉,α

(c†i,αcj,α + h.c.) + U
N∑

i=1

ni↑ni↓

where t characterizes the tunneling between nearest neighboor sites
and U controls the onsite Coulomb repulsion. These interactions can
be approximately recreated with the atoms trapped in an optical lattice.

-t

U
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In the strong coupling limit (U � t) and at half-filling,
Fermi-Hubbard ∼ spin-1/2 quantum Heisenberg

H = J
∑
<ij>

Si · Sj with J = 4t2/U

Using Si = 1
2 f †iασαβfiβ, the Heisenberg Hamiltonian becomes

H =
∑
<ij>

−1
2

Jf †iαfjαf †jβfiβ +
∑
<ij>

J(
1
2

ni −
1
4

ninj)

A constraint must be imposed in order to recover the original
Heisenberg model: f †iαfiα = 1.

The model has a local SU(2) symmetry (Anderson et al.)
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Baryons and Mesons (Fradkin et al.)

After a particle-hole transformation in the spin down operator

fi,↑, f
†
i,↑ → Ψx ,1,Ψ

†
x ,1; fi,↓, f

†
i,↓ → Ψ†x ,2,Ψx ,2

The Heisenberg Hamiltonian can be written as follows

H =
J
8

∑
x ,̂i

[MxMx+̂i + 2(B†xBx+̂i + B†
x+̂i

Bx )]− Jd
4

∑
x

(Mx −
1
2

)

The “meson” and “baryon” operators are as in lattice gauge theory:

Mx =
∑

a=1,2

Ψ†x ,aΨx ,a

and
Bx =

∑
a=1,2

εab

2
Ψx ,aΨx ,a = Ψx ,1Ψx ,2
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Fisher’s zeros: TRG and MC for Ising and O(2)

-0.5

 0

 0.5

 1

 0.012  0.013  0.014

R
e
(
Z
(

β)
/
Z
(

β 0
)
)

Im β

Region 1; Re β = 0.437643

Exact
Ds = 10
Ds = 20
Ds = 40

MC
F.Z

 0

 0.1

 0.2

 0.3

 0.4

 0.6  0.7  0.8  0.9  1  1.1

I
m
 

β

Re β

L=4

L=8

L=16

L=32

L=64
L=128

MC
Ds = 40
Ds = 50
Model

 0.09

 0.1

 0.92  0.94

1M

3M

13M

Figure: Left: the real part of the normalized partition function Re[Z (β)/Z (β0)]
for β near the Fisher zero 0.437643 + i0.01312 (the big filled circle on the
horizontal axis): result from the HOTRG with Ds = 10,20,40 (Ds = 30 result
is not shown as it is close to the Ds = 40 case), MC, and exact solution.
Right: zeros of XY model with linear size L = 4,8,16,32,64,128 (from up-left
to down-right) calculated from HOTRG with Ds = 40,50 and zeros with
L = 4,8,16,32 from MC. The curve is a model for trajectory of the lowest
zeros. Fit: Imβz = 1.27986× (1.1199− Reβz)1.49944.
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Non trivial fixed points for SU(3) with Nf =12?

Irrelevant directions can be slow: problem for small volumes. Finite
size scaling (Fisher zeros)?

Figure: Schematic flows for SU(3) with 12 flavors (picture by Yuzhi Liu).
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Fisher zeros for SU(3) with Nf = 4 and 12 (Yuzhi Liu)
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Figure: Zeros for Nf = 4 and Nf = 12 for L4 lattices (L = 16, 20). 12 flavors
pinch the real axis, the zeros scale like L−4 (first order) transtion.
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Search for the end point in (m, β) (Zech Gelzer)
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Figure: Unimproved HMC. Chiral condensate vs. β = 6/g2 for increasing m,
with Nf = 12, V = 44. The masses included (from left to right) are as follows:
0.0050, 0.0105, ... , 0.5000, 0.9999. Will the Fisher’s zero pinch the real axis
like L−2 (ν=1/2, mean field for a free scalar) instead of L−4 near the end point
(for m = mc)? Does first order scaling changes when m→ 0?
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