A unification of information and matter A solution of chiral fermion problem

Xiao-Gang Wen MITT (2016)

Xiao-Gang Wen MIT (2016)

A unification of information and matter A solution of chiral fe

NSF

MA

THEMATRIX.COM

lohn

Templeton Foundation

How to gain a deeper understanding of our world?

Xiao-Gang Wen MIT (2016) A unification of information and matter A solution of chiral fe

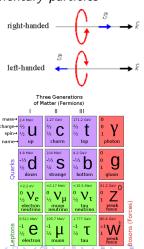
- 🔹 🖻

A reductionist approach: Elementary particles

A deeper and more systematic understanding is gained by **dividing things into smaller parts**

until we reach the indivisible elements - elementary particles

- Matter particles (spin- $\frac{1}{2}$ fermions)
- leptons (electron-e, neutrino- ν , ...)
- quarks (up-*u*,down-*d*, ... with "color")
- Force particles (spin-1 gauge bosons)
- photon- γ : electromagnetic interaction
- gluon-g (colored): strong interaction
- Z, W: weak interaction



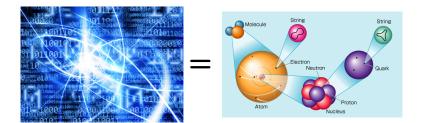
A unification between matter and information

・ロン ・回と ・ヨン ・ヨン

э

A unification between matter and information

• Information: Changing information (qubits) \rightarrow frequency According to quantum physics: frequency \rightarrow energy $\hbar \omega = E$ According to relativity: energy \rightarrow mass \rightarrow Matter



How does matter come from information?

- **Reductionist approach** assumes that space is EMPTY, and things placed in space are divisible.
- Emergence approach assume that space is a dynamical medium
 - an ocean of qubits, 0's and 1's

Elementary particles are the motions, the defects, the "whirlpools", etc in the ocean of qubits.

Space ~ Ocean Elementary particles ~ Bubbles in ocean

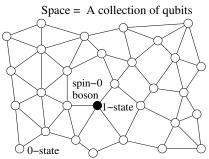
Do we really believe space to be an ocean of qubits

Can ocean of simple qubits (quantum information) really produce all kinds of matter and our rich world?

A 3 5 A 3 5

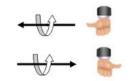
Can ocean of simple qubits (quantum information) really produce all kinds of matter and our rich world?

If all matter was formed by one kind of spin-0 bosons, then the ocean of simple qubits could indeed produce such bosonic elementary particle, and all kinds of matter.



Seven wonders of our universe:

- 1. Identical particles
- 2. Spin-1 bosons with only two-components
- 3. Particles with Fermi statistics
- 4. Fractional angular momentum (spin-1/2)

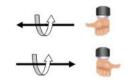


- 5. Only right-hand fermions couple the SU(2) spin-1-bosons
- 6. Lorentz symmetry
- 7. Spin-2 bosons with only two-components (gravitons)

Seven wonders of our universe:

- 1. Identical particles
- 2. Spin-1 bosons with only two-components
- 3. Particles with Fermi statistics
- 4. Fractional angular momentum (spin-1/2)
- 5. Only right-hand fermions couple the SU(2) spin-1-bosons
- 6. Lorentz symmetry
- 7. Spin-2 bosons with only two-components (gravitons)

Can simple qubits produce the above seven wonders?

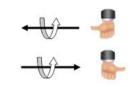


Seven wonders of our universe:

- 1. Identical particles
- 2. Spin-1 bosons with only two-components
- 3. Particles with Fermi statistics
- 4. Fractional angular momentum (spin-1/2)
- 5. Only right-hand fermions couple the SU(2) spin-1-bosons
- 6. Lorentz symmetry
- 7. Spin-2 bosons with only two-components (gravitons)

Can simple qubits produce the above seven wonders?

• Yes for 1-6, if the qubits have Long-range entanglement Chen-Gu-Wen 10 (or have topological order Wen 89)



Seven wonders of our universe:

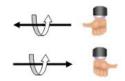
- 1. Identical particles
- 2. Spin-1 bosons with only two-components
- 3. Particles with Fermi statistics
- 4. Fractional angular momentum (spin-1/2)
- 5. Only right-hand fermions couple the SU(2) spin-1-bosons
- 6. Lorentz symmetry
- 7. Spin-2 bosons with only two-components (gravitons)

Can simple qubits produce the above seven wonders?

- Yes for 1-6, if the qubits have Long-range entanglement Chen-Gu-Wen 10 (or have topological order Wen 89)
- A "great unification" Qubits unify gauge boson and fermion
- A new view: Our world is made of quantum information!

Xiao-Gang Wen MIT (2016)

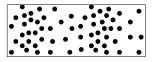
A unification of information and matter A solution of chiral fer



The magic of long-range entangled qubits \rightarrow emergence of electromagnetic waves (photons)

• Wave in superfluid state $|\Phi_{SF}\rangle = \sum_{\text{all position conf.}} | \vdots :$

density fluctuations: $\partial_t^2 \rho - \partial_y^2 \rho = 0$ \rightarrow Longitudinal wave



Qubit-1's in the qubit ocean form closed strings

• Wave in closed-string liquid $|\Phi_{\text{string}}\rangle = \sum_{\text{closed strings}} |\nabla f|$:

String density E(x) fluctuations \rightarrow waves in string liquid. Closed strings $\rightarrow \partial \cdot \mathbf{E} = 0 \rightarrow$ only two transverse modes. \rightarrow $\dot{\mathbf{E}} - \partial \times \mathbf{B} = \dot{\mathbf{B}} + \partial \times \mathbf{E} = \partial \cdot \mathbf{B} = \partial \cdot \mathbf{E} = 0$. (\mathbf{E} electric field) Xiao-Gang Wen MIT (2016) A unification of information and matter A solution of chiral fe

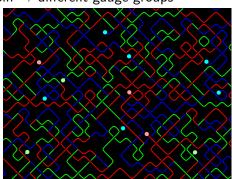
The magic of long-range entangled qubits \rightarrow Emergence of Yang-Mills theory (gluons)

- If string has different types and can branch
 → string-net liquid → Yang-Mills theory
- \bullet Different ways that strings join \rightarrow different gauge groups
- String types \rightarrow representations of

gauge group.



- String-loops ightarrow electromagnetic int. γ



- String-nets \rightarrow Strong g and weak W, Z interactions

Wen hep-th/01090120, hep-th/0302201; Levin-Wen cond-mat/0404617 = > < = > = >

Xiao-Gang Wen MIT (2016)

A unification of information and matter A solution of chiral fe

A string-net theory of light

The magic of long-range entangled qubits \rightarrow Emergence of Fermi statistics

d Matter (Fermions)

- In string liquids, the ends of string behave like point particles (gauge charges).
- String attached to the particle does not cost energy, but can give Fermi statistics to the particle
 End of string = fermion (electron & quark).
- A unification of gauge interactions and Fermi statistics

- A 🗇 N - A 🖻 N - A 🖻 N

Levin-Wen cond-mat/0302460, cond-mat/0407140

The magic of long-range entangled qubits \rightarrow emergence of (linearized) Einstein gravity

• In Gu-Wen arXiv:gr-qc/0606100; arXiv:0907.1203, we designed a lattice model with field $h_{ij} = h_{ji}$ \rightarrow helicity 0; 0, ± 1 , ± 2 .

• = •

- The helicity 0; 0, ±1 modes are strongly fluctuating, and strongly interacting with helicity ±2 modes.
- The helicity ± 2 modes are weakly fluctuating.
- The helicity 0; 0, ±1 modes aquire a large mass gap, and only the helicity ±2 modes survive as low energy mode with ω ~ k dispersion(?).
- The gaplessness of the helicity ±2 modes is robust against any lattice perturbation. There is an emergent (linearized) diffeomorphism gauge symmetry in the low energy effective theory of the helicity ±2 modes → linearized Einstein gravity(?).
 Weinberg-Witten theorem → no emergent Einstein gravity?

The magic of long-range entangled qubits \rightarrow emergence of $\omega \sim k^3$ gravitons

- In Gu-Wen arXiv:0907.1203, Xu-Horava arXiv:1003.0009 we designed a lattice model with field h_{ij} = h_{ji} → helicity 0; 0, ±1, ±2.
- The helicity 0; 0, ±1 modes are strongly fluctuating, and weakly interacting with helicity ±2 modes.
- The helicity ± 2 modes are weakly fluctuating.
- The helicity 0; 0, ± 1 modes aquire a large mass gap, and only the helicity ± 2 modes survive as low energy mode with $\omega \sim k^3$ dispersion.
- The gaplessness of the helicity ± 2 modes is robust against any lattice perturbation. There is an emergent (linearized) diffeomorphism gauge symmetry in the low energy effective theory of the helicity ± 2 modes \rightarrow linearized Horava-Lifshitz gravity.

Xu arXiv:cond-mat/0602443

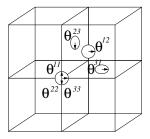
◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

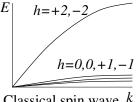
Lattice model

Each vertex: three rotors $(\theta^{aa}, L_{aa}), aa = 11, 22, 33.$ Each face: one rotor $(\theta^{ab}, L_{ab}), ab = 12, 23, 31.$ $\mathcal{L} = \sum L_{ab} \dot{\theta}^{ab} - \text{Complicated } H$ Total six modes (spin waves) with helicity $0, 0, \pm 1, \pm 2$ $\mathcal{L}_{I} = L_{ab}\dot{\theta}^{ab} - \left[\left(L_{ab} \right)^{2} - \frac{\left(L_{aa} \right)^{2}}{2} \right] - \theta^{ab} R^{ab}$ $-U(\partial_{a}L_{ab})^{2}-U(R^{aa})^{2}+\cdots$ $\mathcal{L}_{II} = L_{ab}\dot{\theta}^{ab} - \left[\epsilon^{imn}\partial_m(L_{nj} - \frac{\delta_{nj}L_{aa}}{2})\right]^2 - (R^{ab})^2$ $-U(\partial_{a}L_{ab})^{2}-U(R^{aa})^{2}+\cdots$

where $R^{ab} = \epsilon^{ahc} \epsilon^{bdg} \partial_h \partial_d \theta^{gc}$.

• The helicity ±2 modes are classical and the classical picture is valid.





- 小田 ト イヨト 一日

• A h = 0 mode is described by (θ, L) : $L_{ab} = (\delta_{ab}\partial^2 - \partial_a\partial_b)L$ $\theta = (\delta_{ab}\partial^2 - \partial_a\partial_b)\theta^{ab} = R^{aa}$ Quantum fluctuations: $\delta \theta = 0$, $\delta L = \infty$ To have gap: θ^{ab} must be discretized $\Delta \theta^{ab} = 2\pi/n_G$ L_{ab} must be compactified $L \sim L + n_G$ Constraint and gauge transformation: $(\delta_{ab}\partial^2 - \partial_a\partial_b)\theta^{ab} = 0.$ $L_{ab} \rightarrow L_{ab} + (\delta_{ab}\partial^2 - \partial_a\partial_b)L$ • $h = 0, \pm 1$ modes are described by (θ^a, L_a) : $\theta^{ab} = \partial_a \theta^b + \partial_b \theta^a$. $L_a = \partial_b L_{ab}$ Quantum fluctuations: $\delta L_a = 0$, $\delta \theta^a = \infty$ L_a is discrete \rightarrow gap. Constraint and gauge transformation: $L_2 = \partial_b L_{2b} = 0, \ \theta^{ab} \to \theta^{ab} + \partial_2 \theta^b + \partial_b \theta^a$

E h=0,0,+1,-1 h=+2,-2graviton

Partial quantum freeze

 $\mathcal{L}_{I,II}$ + Constraint and gauge trans. = linearized Einstein or Horava-Lifshitz gravity with $\theta^{ij} \sim g^{ij} - \delta^{ij}$ $\langle \Box \rangle \langle B \rangle \langle E \rangle$

Emergence of chiral fermions

The standard model is not well defined theoretically

- Calculations of the standard model are based on perturbation \rightarrow the standard model is only defined perturbatively.
- But the perturbative expension does not converge
 - \rightarrow the standard model is not well defined (non-perturbatively)

Chiral fermion problem:

How to put the standard model on lattice.

白 と く ヨ と く ヨ と …

Emergence of chiral fermions

The standard model is not well defined theoretically

- Calculations of the standard model are based on perturbation \rightarrow the standard model is only defined perturbatively.
- But the perturbative expension does not converge
 - \rightarrow the standard model is not well defined (non-perturbatively)

Chiral fermion problem:

How to put the standard model on lattice.

It from qubit

If we achieve that, then we show matter = information

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

Emergence of chiral fermions

The standard model is not well defined theoretically

- Calculations of the standard model are based on perturbation \rightarrow the standard model is only defined perturbatively.
- But the perturbative expension does not converge
 - \rightarrow the standard model is not well defined (non-perturbatively)

Chiral fermion problem:

How to put the standard model on lattice.

It from qubit

If we achieve that, then we show **matter = information**

- Each lattice point has finite degrees of freemdom = a few qubits.
- The dynamics of the quibts is described by our lattice model \rightarrow low energy excitations of lattice qubit model will be the

elementary particles described by the standard model.

Qubit \rightarrow matter (elementary particles)

• We like construct a lattice fermion model with SO(10) symmetry, such that its low energy excitations are described by R-hand massless Weyl fermions that form the 16-dim representation of the SO(10): $\mathcal{H} = \psi^{\dagger}_{R\alpha} \sigma^i \partial_i \psi_{R\alpha}$ where σ^i are Pauli matrices.

□→ ★ 国 → ★ 国 → □ 国

- We like construct a lattice fermion model with SO(10) symmetry, such that its low energy excitations are described by R-hand massless Weyl fermions that form the 16-dim representation of the SO(10): $\mathcal{H} = \psi^{\dagger}_{R\alpha} \sigma^i \partial_i \psi_{R\alpha}$ where σ^i are Pauli matrices.
- If we gauge the SO(10) symmetry in the lattice model $\rightarrow SO(10)$ gauge/fermion theory on lattice such that SO(10) gauge field only couple to R-hand massless Weyl fermions.

< □→ < 注→ < 注→ □ 注

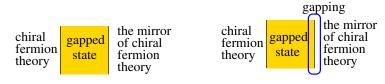
- We like construct a lattice fermion model with SO(10) symmetry, such that its low energy excitations are described by R-hand massless Weyl fermions that form the 16-dim representation of the SO(10): $\mathcal{H} = \psi^{\dagger}_{R\alpha} \sigma^i \partial_i \psi_{R\alpha}$ where σ^i are Pauli matrices.
- If we gauge the SO(10) symmetry in the lattice model $\rightarrow SO(10)$ gauge/fermion theory on lattice such that SO(10) gauge field only couple to R-hand massless Weyl fermions.
- There is no non-interacting lattice fermion model with SO(10) symmetry, such that its low energy excitations are described by R-hand massless Weyl fermions that form the 16-dim representation of the SO(10)

|▲□ ▶ ▲ 三 ▶ ▲ 三 ● ● ● ●

- We like construct a lattice fermion model with SO(10) symmetry, such that its low energy excitations are described by R-hand massless Weyl fermions that form the 16-dim representation of the SO(10): $\mathcal{H} = \psi^{\dagger}_{R\alpha} \sigma^i \partial_i \psi_{R\alpha}$ where σ^i are Pauli matrices.
- If we gauge the SO(10) symmetry in the lattice model $\rightarrow SO(10)$ gauge/fermion theory on lattice such that SO(10) gauge field only couple to R-hand massless Weyl fermions.
- There is no non-interacting lattice fermion model with SO(10) symmetry, such that its low energy excitations are described by R-hand massless Weyl fermions that form the 16-dim representation of the SO(10)
- There is a non-interacting lattice fermion model with SO(10)symmetry, such that its low energy excitations are described by R-hand + L-rand massless Weyl fermions which both form the 16-dim representation of the SO(10): $\mathcal{H} = \psi_{R\alpha}^{\dagger} \sigma^{i} \partial_{i} \psi_{R\alpha} + \psi_{L\alpha}^{\dagger} (-) \sigma^{i} \partial_{i} \psi_{L\alpha}$.

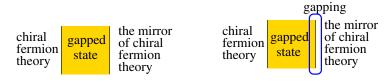
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Mirror fermion construction



- The 3D spacial lattice is given by a 4D slab of finite thickness.
- The R-fermions are on one surface, and the L-fermions are on the other surface.

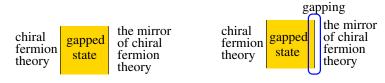
Mirror fermion construction



- The 3D spacial lattice is given by a 4D slab of finite thickness.
- The R-fermions are on one surface, and the L-fermions are on the other surface.
- We gap out the mirror sector by adding off-diagonal mass term $\delta \mathcal{H} = \psi_{L\alpha}^T i \sigma^2 h^a \Gamma_a^{\alpha\beta} \psi_{L\beta} + h.c..$

But such a term breaks the SO(10) symmetry, where the Higgs field h^a is in 10-dim representation of the SO(10).

Mirror fermion construction

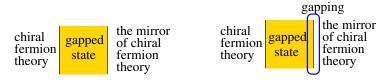


- The 3D spacial lattice is given by a 4D slab of finite thickness.
- The R-fermions are on one surface, and the L-fermions are on the other surface.
- We gap out the mirror sector by adding off-diagonal mass term $\delta \mathcal{H} = \psi_{L\alpha}^T i \sigma^2 h^a \Gamma_a^{\alpha\beta} \psi_{L\beta} + h.c.$

But such a term breaks the SO(10) symmetry, where the Higgs field h^a is in 10-dim representation of the SO(10).

• Eichten-Preskill suggest adding interaction in the mirror sector to gap out the mirror sector. Use composite mirror fermions $\psi_c = \psi_L^3$ in $\overline{16}$ -dim rep. to form SO(10) invariant mass term $\delta \mathcal{H} = \psi_{c\alpha}^T i \sigma^2 \psi_{L\alpha} + h.c.$

(日) (同) (E) (E) (E)



- The 3D spacial lattice is given by a 4D slab of finite thickness.
- The R-fermions are on one surface, and the L-fermions are on the other surface.
- We gap out the mirror sector by adding off-diagonal mass term $\delta \mathcal{H} = \psi_{L\alpha}^T i \sigma^2 h^a \Gamma_a^{\alpha\beta} \psi_{L\beta} + h.c..$

But such a term breaks the SO(10) symmetry, where the Higgs field h^a is in 10-dim representation of the SO(10).

• Eichten-Preskill suggest adding interaction in the mirror sector to gap out the mirror sector. Use composite mirror fermions $\psi_c = \psi_L^3$ in 16-dim rep. to form SO(10) invariant mass term $\delta \mathcal{H} = \psi_{c\alpha}^T i \sigma^2 \psi_{L\alpha} + h.c.$. But the composite fermion construction works even for anomalous theory.

Composite fermion in 1+1D

• Consider 3-4-5-2 chiral fermion model + mirror sector in 1+1D: two right-moving mirror fermions (spin 1/2) ψ_3 and ψ_4 of U(1) charge 3 and 4 two left-moving mirror fermions (spin -1/2) $\bar{\psi}_5$ and $\bar{\psi}_2$ of U(1)

charge -5 and -2.

The composite fermions are

$$\begin{aligned} \bar{\chi}_3 &= \bar{\psi}_2(\psi_4 \bar{\psi}_5), & \bar{\chi}_4 &= \bar{\psi}_2(\psi_3 \bar{\psi}_5), & \text{spin } -\frac{1}{2} \\ \chi_5 &= \psi_4(\psi_4^* \bar{\psi}_5^*), & \chi_2 &= \psi_3(\psi_4 \bar{\psi}_5), & \text{spin } \frac{1}{2} \end{aligned}$$

- The composite fermions and the mirror fermions can be fully gapped by the mass term \$\overline{\chi}_3 \psi_3 + \overline{\chi}_4 \psi_4 + \overline{\psi}_5 \chi_5 + \overline{\psi}_2 \chi_2 \chi_2\$ → the chiral 3-4-5-2 model in 1+1D can be defined on lattice. This result is incorrect since the 3-4-5-2 model in 1+1D has an U(1) gauge anomaly.
- Interaction can gap out the mirror sector ???

500

Mirror fermion construction II

• Here I like to argue that the idea of using interaction to gap out the mirror sector still works, but the condition from the composite fermion construction:

"A mirror sector with symmetry G can be gapped out without breaking the symmetry if there exists composite fermions such that we can find symmetric mass terms of composite/mirror fermions to gap out all the composite/mirror fermions."

is not correct.

□→ ★ 国 → ★ 国 → □ 国

Mirror fermion construction II

• Here I like to argue that the idea of using interaction to gap out the mirror sector still works, but the condition from the composite fermion construction:

"A mirror sector with symmetry G can be gapped out without breaking the symmetry if there exists composite fermions such that we can find symmetric mass terms of composite/mirror fermions to gap out all the composite/mirror fermions." is not correct.

Wen arXiv:1305.1045

A mirror sector with symmetry *G* can be gapped out without breaking the symmetry if (1) there exists a (possiblly symmetry breaking) mass term to give all mirror fermions a mass, and (2) $\pi_n(G/G_m) = 0$ for n = 0, 1, 2, 3, 4, 5 where G_m is the group of unbroken symmetry.

• For our example G = SO(10), $\delta \mathcal{H} = \psi_{L\alpha}^T i \sigma^2 h^a \Gamma_a^{\alpha\beta} \psi_{L\beta} + h.c.$, and $G_m = SO(9)$. $SO(10)/SO(9) = S^9$. The SO(10) mirror sector can be gapped out.

• We first use a constant Higgs field h^a in 10-dim rep. of SO(10) to gap out the mirror sector, that breaks $SO(10) \rightarrow SO(9)$.

通 と く ヨ と く ヨ と

- We first use a constant Higgs field h^a in 10-dim rep. of SO(10) to gap out the mirror sector, that breaks $SO(10) \rightarrow SO(9)$.
- We increase the angular fluctuations of the Higgs field $h^a(x^{\mu})$ to restore the SO(10) symmetry $\langle h^a(x^{\mu}) \rangle = 0$, but keep $|h^a(x^{\mu})| = M$. We hope the Higgs field to remain smooth in the disordored phase and the mirror fermions to remain gapped.

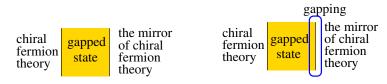
(本間) (本語) (本語) (語)

- We first use a constant Higgs field h^a in 10-dim rep. of SO(10) to gap out the mirror sector, that breaks $SO(10) \rightarrow SO(9)$.
- We increase the angular fluctuations of the Higgs field $h^a(x^{\mu})$ to restore the SO(10) symmetry $\langle h^a(x^{\mu}) \rangle = 0$, but keep $|h^a(x^{\mu})| = M$. We hope the Higgs field to remain smooth in the disordored phase and the mirror fermions to remain gapped.
- The above arguement has a loophole. A random configuration of $h^a(x^{\mu})$ in 3+1D space-time may trap point, line,... topological defects. $h^a(x^{\mu}) = 0$ at the center of defects, which may trap fermion zero modes. Those fermion zero modes may become the low energy excitations in the disordered phase.

ロト・「同ト・モト・モト・モ

- We first use a constant Higgs field h^a in 10-dim rep. of SO(10) to gap out the mirror sector, that breaks $SO(10) \rightarrow SO(9)$.
- We increase the angular fluctuations of the Higgs field $h^a(x^{\mu})$ to restore the SO(10) symmetry $\langle h^a(x^{\mu}) \rangle = 0$, but keep $|h^a(x^{\mu})| = M$. We hope the Higgs field to remain smooth in the disordored phase and the mirror fermions to remain gapped.
- The above arguement has a loophole. A random configuration of $h^a(x^{\mu})$ in 3+1D space-time may trap point, line,... topological defects. $h^a(x^{\mu}) = 0$ at the center of defects, which may trap fermion zero modes. Those fermion zero modes may become the low energy excitations in the disordered phase.
- But for our case, h^a lives on S^9 and $\pi_n(S^9) = 0$ for n < 9. Thus there is no point defect since $\pi_3(S^9) = 0$, there is no line defect since $\pi_2(S^9) = 0$, there is no sheet defect since $\pi_1(S^9) = 0$, there is no domain-wall defect since $\pi_0(S^9) = 0$.

An arguement for the conjecture (continued)



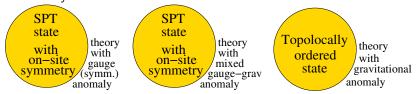
• After integrating out the massive mirror fermions, the effective S^9 non-linear σ -model for $h^a(x^{\mu})$ at the 3+1D boundary may contain θ -topological term and/or WZW-topological term. But since $\pi_4(S^9) = 0$ and $\pi_5(S^9) = 0$, both topological terms do not exist. The S^9 non-linear σ -model for $h^a(x^{\mu})$ can have a disordered phase that do not break the SO(10) symmetry.

The Weyl fermions in 16-dim rep. of SO(10) can be defined on lattice. It does not have any known and unknown anomalies.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Anomaly and gapped quantum phases

 If the chiral fermion theory on the boundary has anomaly, the gapped bulk state will be in a non-trivial topologial phase.



- If the bulk phase is trivial, then its boundary can be gapped without breaking the symmetry.
- If a chiral theory is free of all anomalies, then its can always be put on lattice. → The solution of chiral fermion problem.