Non-perturbative definition of the energy-momentum tensor on the lattice

Leonardo Giusti
University of Milano-Bicocca and INFN

Based on: L. G. and H. B. Meyer 2011-2013; L. G. and M. Pepe 2014-2016

- Introduction
- Free-energy density with "shifted" boundary conditions

$$
\begin{gathered}
f\left(\sqrt{L_{0}^{2}+\boldsymbol{z}^{2}}\right)=-\lim _{V \rightarrow \infty} \frac{1}{L_{0} V} \ln Z\left(L_{0}, \boldsymbol{z}\right) \\
\phi\left(L_{0}, \boldsymbol{x}\right)=\phi(0, \mathbf{x}-\boldsymbol{z})
\end{gathered}
$$

- Ward Identities in infinite and finite volume
- Definition of $T_{\mu \nu}$ on the lattice
- Non-perturbative measure of the entropy density
- Conclusions and outlook
- Introduction
- Free-energy density with "shifted" boundary conditions

$$
f\left(L_{0} \sqrt{1+\boldsymbol{\xi}^{2}}\right)=-\lim _{V \rightarrow \infty} \frac{1}{L_{0} V} \ln Z\left(L_{0}, \boldsymbol{\xi}\right)
$$

$$
\phi\left(L_{0}, \boldsymbol{x}\right)=\phi\left(0, \boldsymbol{x}-L_{0} \boldsymbol{\xi}\right)
$$

- Ward Identities in infinite and finite volume
- Definition of $T_{\mu \nu}$ on the lattice
- Non-perturbative measure of the entropy density
- Conclusions and outlook

Energy-momentum tensor on the lattice: the problem

- On the lattice the Poincaré group is broken down to a discrete group and standard discretizations of $T_{\mu \nu}$ acquire finite ultraviolet renormalizations
- We focus on the $\operatorname{SU}(3)$ Yang-Mills. The analysis applies to other theories as well

$$
\begin{gathered}
T_{\mu \nu}^{\mathrm{R}}=Z_{T}\left\{T_{\mu \nu}^{[1]}+z_{T} T_{\mu \nu}^{[3]}+z_{S}\left[T_{\mu \nu}^{[2]}-\left\langle T_{\mu \nu}^{[2]}\right\rangle_{0}\right]\right\} \\
T_{\mu \nu}^{[1]}=\left(1-\delta_{\mu \nu}\right) \frac{1}{g_{0}^{2}}\left\{F_{\mu \alpha}^{a} F_{\nu \alpha}^{a}\right\} \\
T_{\mu \nu}^{[2]}=\delta_{\mu \nu} \frac{1}{4 g_{0}^{2}} F_{\alpha \beta}^{a} F_{\alpha \beta}^{a} \\
T_{\mu \nu}^{[3]}=\delta_{\mu \nu} \frac{1}{g_{0}^{2}}\left\{F_{\mu \alpha}^{a} F_{\mu \alpha}^{a}-\frac{1}{4} F_{\alpha \beta}^{a} F_{\alpha \beta}^{a}\right\}
\end{gathered}
$$

- Non-perturbative definition of $T_{\mu \nu}^{\mathrm{R}}$ means knowing Z_{T}, z_{T} and z_{S} so that in the continuum limit

$$
\partial_{\mu}\left\langle T_{\mu \nu}^{\mathrm{R}}(x) O(0)\right\rangle=0, \quad x \neq 0
$$

Energy-momentum tensor on the lattice: recent progress

- Perturbative analysis and 1-loop computation
[Caracciolo, Curci, Menotti, Pelissetto 88-92]
- Shifted boundary conditions in thermal theory and related WIs [LG, Meyer 11-13]
- Energy-momentum tensor from the Yang-Mills gradient flow
[Makino, Suzuki 13-15; FlowQCD Coll. 14-16]
- Space-time symmetries and the Yang-Mills gradient flow
[Del Debbio, Patella, Rago 13-15]
- Non-perturbative renormalization of $T_{\mu \nu}$
[LG, Pepe 14-16]

Thermal field theories in the Euclidean path integral formalism

- From textbooks

$$
Z\left(L_{0}\right)=\operatorname{Tr}\left\{e^{-L_{0} \widehat{H}}\right\}
$$

where the temperature is $T=1 / L_{0}$

- The basic thermodynamic quantities are defined as
$f=-\frac{1}{L_{0} V} \ln Z\left(L_{0}\right) \quad e=-\frac{1}{V} \frac{\partial}{\partial L_{0}} \ln Z\left(L_{0}\right) \quad s=-\frac{L_{0}^{2}}{V} \frac{\partial}{\partial L_{0}}\left\{\frac{1}{L_{0}} \ln Z\left(L_{0}\right)\right\}$
which in the thermodynamic limit lead to

$$
p=-f \quad s=L_{0}(e+p) \quad c_{v}=-L_{0} \frac{\partial}{\partial L_{0}} s
$$

$$
\begin{aligned}
& \phi(x)=\phi\left(x+V_{\mathrm{pbc}} m\right) \quad m \in \mathbb{Z}^{4} \\
& V_{\mathrm{pbc}}=\left(\begin{array}{cccc}
L_{0} & 0 & 0 & 0 \\
0 & L_{1} & 0 & 0 \\
0 & 0 & L_{2} & 0 \\
0 & 0 & 0 & L_{3}
\end{array}\right)
\end{aligned}
$$

Path integrals with shifted boundary conditions: infinite-volume limit (I)

- We are interested in the partition function

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{0}(\widehat{H}-i \boldsymbol{\xi} \cdot \widehat{\boldsymbol{P}})}\right\}
$$

$$
\begin{gathered}
\phi(x)=\phi\left(x+V_{\mathrm{sbc}} m\right) \quad m \in \mathbb{Z}^{4} \\
V_{\mathrm{sbc}}=\left(\begin{array}{cccc}
L_{0} & 0 & 0 & 0 \\
L_{0} \xi_{1} & L_{1} & 0 & 0 \\
L_{0} \xi_{2} & 0 & L_{2} & 0 \\
L_{0} \xi_{3} & 0 & 0 & L_{3}
\end{array}\right)
\end{gathered}
$$

Path integrals with shifted boundary conditions: infinite-volume limit (I)

- We are interested in the partition function

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{0}\left(\widehat{H}-i \xi_{1} \widehat{P}_{1}\right)}\right\}
$$

where we have chosen $\boldsymbol{\xi}=\left\{\xi_{1}, 0,0\right\}$

$$
\begin{gathered}
\phi(x)=\phi\left(x+V_{\mathrm{sbc}} m\right) \quad m \in \mathbb{Z}^{4} \\
V_{\mathrm{sbc}}=\left(\begin{array}{cccc}
L_{0} & 0 & 0 & 0 \\
L_{0} \xi_{1} & L_{1} & 0 & 0 \\
0 & 0 & L_{2} & 0 \\
0 & 0 & 0 & L_{3}
\end{array}\right)
\end{gathered}
$$

Path integrals with shifted boundary conditions: infinite-volume limit (I)

- We are interested in the partition function

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{0}\left(\widehat{H}-i \xi_{1} \widehat{P}_{1}\right)}\right\}
$$

where we have chosen $\boldsymbol{\xi}=\left\{\xi_{1}, 0,0\right\}$

- By making an Euclidean "boost" rotation

$$
\gamma_{1}=\frac{1}{\sqrt{1+\xi_{1}^{2}}}
$$

$$
\Lambda=\left(\begin{array}{cccc}
\gamma_{1} & \gamma_{1} \xi_{1} & 0 & 0 \\
-\gamma_{1} \xi_{1} & \gamma_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Path integrals with shifted boundary conditions: infinite-volume limit (I)

- We are interested in the partition function

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{0}\left(\widehat{H}-i \xi_{1} \widehat{P}_{1}\right)}\right\}
$$

where we have chosen $\boldsymbol{\xi}=\left\{\xi_{1}, 0,0\right\}$

- By making an Euclidean "boost" rotation

$$
\gamma_{1}=\frac{1}{\sqrt{1+\xi_{1}^{2}}}
$$

$$
\Lambda=\left(\begin{array}{cccc}
\gamma_{1} & \gamma_{1} \xi_{1} & 0 & 0 \\
-\gamma_{1} \xi_{1} & \gamma_{1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Lorentz [SO(4)] invariance implies

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{1} \gamma_{1}\left(\widetilde{H}-i \xi_{1} \widetilde{P}_{0}\right)}\right\} \quad V_{\mathrm{sbc}}^{\prime}=\Lambda V_{\mathrm{sbc}}=\left(\begin{array}{cccc}
L_{0} / \gamma_{1} & L_{1} \gamma_{1} \xi_{1} & 0 & 0 \\
0 & L_{1} \gamma_{1} & 0 & 0 \\
0 & 0 & L_{2} & 0 \\
0 & 0 & 0 & L_{3}
\end{array}\right)
$$

Path integrals with shifted boundary conditions: infinite-volume limit (II)

- Assuming that \widetilde{H} has a translationally-invariant vacuum and a mass gap $\left[\boldsymbol{\xi}=\left\{\xi_{1}, 0,0\right\}\right]$

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{1} \gamma_{1}\left(\widetilde{H}-i \xi_{1} \widetilde{P}_{0}\right)}\right\} \quad V_{\mathrm{sbc}}^{\prime}=\Lambda V_{\mathrm{sbc}}=\left(\begin{array}{cccc}
L_{0} / \gamma_{1} & L_{1} \gamma_{1} \xi_{1} & 0 & 0 \\
0 & L_{1} \gamma_{1} & 0 & 0 \\
0 & 0 & L_{2} & 0 \\
0 & 0 & 0 & L_{3}
\end{array}\right)
$$

the right hand side becomes insensitive to the phase in the limit $L_{1} \rightarrow \infty$ at fixed ξ_{1}

$$
f\left(L_{0} \sqrt{1+\xi_{1}^{2}}\right)=-\lim _{V \rightarrow \infty} \frac{1}{L_{0} V} \ln Z\left(L_{0}, \boldsymbol{\xi}\right)
$$

$$
V_{\mathrm{sbc}}^{\prime \prime}=\left(\begin{array}{cccc}
L_{0} / \gamma_{1} & 0 & 0 & 0 \\
0 & L_{1} \gamma_{1} & 0 & 0 \\
0 & 0 & L_{2} & 0 \\
0 & 0 & 0 & L_{3}
\end{array}\right)
$$

- Thanks to cubic symmetry (infinite volume)

$$
f\left(L_{0}, \boldsymbol{\xi}\right)=f\left(L_{0} \sqrt{1+\boldsymbol{\xi}^{2}}, \mathbf{0}\right)
$$

$$
\phi\left(x_{0}, \boldsymbol{x}\right)=\phi\left(x_{0}+L_{0}, \boldsymbol{x}+L_{0} \boldsymbol{\xi}\right)
$$

for a generic shift $\boldsymbol{\xi}$

Thermal field theory in a moving frame

- If \widehat{H} and $\widehat{\boldsymbol{P}}$ are the Hamiltonian and the total momentum operator expressed in a moving frame, the standard partition function is

$$
\mathcal{Z}\left(L_{0}, \boldsymbol{v}\right) \equiv \operatorname{Tr}\left\{e^{-L_{0}(\widehat{H}-\boldsymbol{v} \cdot \widehat{\boldsymbol{P}})}\right\}
$$

- If we continue \mathcal{Z} to imaginary velocities $\boldsymbol{v}=i \boldsymbol{\xi}$

$$
Z\left(L_{0}, \boldsymbol{\xi}\right)=\operatorname{Tr}\left\{e^{-L_{0}(\widehat{H}-i \boldsymbol{\xi} \cdot \widehat{\boldsymbol{P}})}\right\}
$$

- The functional dependence $f\left(L_{0} \sqrt{1+\xi^{2}}\right)$ is consistent with modern thermodynamic arguments on the Lorentz transformation of the temperature and the free-energy [Ott 63; Arzelies 65; see Przanowski 11 for a recent discussion]
- In the zero-temperature limit the invariance of the theory (and of its vacuum) under the Poincaré group forces its free energy to be independent of the shift $\boldsymbol{\xi}$
- At non-zero temperature the finite length L_{0} breaks $\mathrm{SO}(4)$ softly, and the free energy depends on the shift (velocity) but only through the combination $\beta=L_{0} \sqrt{1+\xi^{2}}$

Cumulants of the energy and the momentum distributions

- The cumulants of the momentum distribution are

$$
k_{\{2 n, 0,0\}}=\frac{1}{V}\left\langle\widehat{P}_{1}^{2 n}\right\rangle_{c}=\left.\frac{(-1)^{n+1}}{L_{0}^{2 n-1}} \frac{\partial^{2 n}}{\partial \xi_{1}^{2 n}} f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0}
$$

| Cumulants of the energy and the momentum distributions

- The cumulants of the momentum distribution are

$$
\frac{k_{\{2 n, 0,0\}}}{L_{0}}=\left.(-1)^{n+1}(2 n-1)!!\left\{\frac{1}{L_{0}} \frac{\partial}{\partial L_{0}}\right\}^{n} f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0}
$$

Cumulants of the energy and the momentum distributions

- The cumulants of the momentum distribution are

$$
\frac{k_{\{2 n, 0,0\}}}{L_{0}}=\left.(-1)^{n+1}(2 n-1)!!\left\{\frac{1}{L_{0}} \frac{\partial}{\partial L_{0}}\right\}^{n} f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0}
$$

- The cumulants of the energy distribution are
$c_{n}=\frac{1}{V}\left\langle\widehat{H}^{n}\right\rangle_{c}=\left.(-1)^{n+1}\left[n \frac{\partial^{n-1}}{\partial L_{0}^{n-1}}+L_{0} \frac{\partial^{n}}{\partial L_{0}^{n}}\right] f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0} \quad n=2,3 \ldots$

Cumulants of the energy and the momentum distributions

- The cumulants of the momentum distribution are

$$
\frac{k_{\{2 n, 0,0\}}}{L_{0}}=\left.(-1)^{n+1}(2 n-1)!!\left\{\frac{1}{L_{0}} \frac{\partial}{\partial L_{0}}\right\}^{n} f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0}
$$

- The cumulants of the energy distribution are
$c_{n}=\frac{1}{V}\left\langle\widehat{H}^{n}\right\rangle_{c}=\left.(-1)^{n+1}\left[n \frac{\partial^{n-1}}{\partial L_{0}^{n-1}}+L_{0} \frac{\partial^{n}}{\partial L_{0}^{n}}\right] f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0} \quad n=2,3 \ldots$
which imply that

$$
k_{\{2 n, 0,0\}}=\frac{(2 n-1)!!}{\left(2 L_{0}^{2}\right)^{n}} \sum_{\ell=1}^{n} \frac{(2 n-\ell)!}{\ell!(n-\ell)!}\left(2 L_{0}\right)^{\ell} c_{\ell}
$$

the total energy and momentum distributions of a relativistic thermal theory are related

Cumulants of the energy and the momentum distributions

- The cumulants of the momentum distribution are

$$
\frac{k_{\{2 n, 0,0\}}}{L_{0}}=\left.(-1)^{n+1}(2 n-1)!!\left\{\frac{1}{L_{0}} \frac{\partial}{\partial L_{0}}\right\}^{n} f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0}
$$

- The cumulants of the energy distribution are
$c_{n}=\frac{1}{V}\left\langle\widehat{H}^{n}\right\rangle_{c}=\left.(-1)^{n+1}\left[n \frac{\partial^{n-1}}{\partial L_{0}^{n-1}}+L_{0} \frac{\partial^{n}}{\partial L_{0}^{n}}\right] f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0} \quad n=2,3 \ldots$

Up to $n=4$ it reads

$$
\begin{aligned}
& L_{0} k_{\{2,0,0\}}=c_{1} \\
& L_{0}^{3} k_{\{4,0,0\}}=9 c_{1}+3 L_{0} c_{2}, \\
& L_{0}^{5} k_{\{6,0,0\}}=225 c_{1}+90 L_{0} c_{2}+15 L_{0}^{2} c_{3}, \\
& L_{0}^{7} k_{\{8,0,0\}}=11025 c_{1}+4725 L_{0} c_{2}+1050 L_{0}^{2} c_{3}+105 L_{0}^{3} c_{4}
\end{aligned}
$$

Cumulants of the energy and the momentum distributions

- The cumulants of the momentum distribution are

$$
\frac{k_{\{2 n, 0,0\}}}{L_{0}}=\left.(-1)^{n+1}(2 n-1)!!\left\{\frac{1}{L_{0}} \frac{\partial}{\partial L_{0}}\right\}^{n} f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0}
$$

- The cumulants of the energy distribution are
$c_{n}=\frac{1}{V}\left\langle\widehat{H}^{n}\right\rangle_{c}=\left.(-1)^{n+1}\left[n \frac{\partial^{n-1}}{\partial L_{0}^{n-1}}+L_{0} \frac{\partial^{n}}{\partial L_{0}^{n}}\right] f\left(L_{0} \sqrt{1+\xi^{2}}\right)\right|_{\xi=0} \quad n=2,3 \ldots$
- Thermodynamic potentials can be extracted from the momentum cumulants

$$
\begin{aligned}
& k_{\{2,0,0\}}=T(e+p)=T^{2} s \\
& k_{\{4,0,0\}}=3 T^{4}\left(c_{v}+3 s\right)
\end{aligned}
$$

by remembering that $\frac{\partial p}{\partial T}=s$

Euclidean Ward identities for correlators of $\bar{T}_{\mu \nu}$

- In the path integral formalism

$$
\begin{aligned}
& L_{0}\left\langle\bar{T}_{01} T_{01}\right\rangle_{c}=\left\langle T_{00}\right\rangle-\left\langle T_{11}\right\rangle \\
& L_{0}^{3}\left\langle\bar{T}_{01} \bar{T}_{01} \bar{T}_{01} T_{01}\right\rangle_{c}=9\left\langle T_{11}\right\rangle-9\left\langle T_{00}\right\rangle+3 L_{0}\left\langle\bar{T}_{00} T_{00}\right\rangle_{c}
\end{aligned}
$$

where $\left\langle T_{00}\right\rangle=-e,\left\langle T_{11}\right\rangle=p, \widehat{P}_{1} \rightarrow-i \bar{T}_{01}$ and

$$
\bar{T}_{\mu \nu}\left(x_{0}\right)=\int d^{3} x T_{\mu \nu}(x)
$$

- Note that:
* All operators at non-zero distance
* Number of EMT on the two sides different
* On the lattice they can be imposed to fix the renormalization of $T_{\mu \nu}$

Ward identities in thermal theory: where they come from ?

- The commutator of boost with momentum

$$
\left[\hat{K}_{k}, \hat{P}_{k}\right]=i \hat{H}
$$

is expressed in the Euclidean by the WIs

$$
\int_{\partial R} d \sigma_{\mu}(x)\left\langle K_{\mu ; 0 k}(x) \bar{T}_{0 k}\left(y_{0}\right) O_{1} \ldots O_{n}\right\rangle_{c}=\left\langle\bar{T}_{00}\left(y_{0}\right) O_{1} \ldots O_{n}\right\rangle_{c}
$$

when the O_{i} are localized external fields and, as usual,

$$
K_{\mu ; \alpha \beta}=x_{\alpha} T_{\mu \beta}-x_{\beta} T_{\mu \alpha}
$$

- In a 4D box boost transformations are incompatible with (periodic) bc. WIs associated with $S O(4)$ rotations must be modified by finite-size contributions

Ward identities in thermal theory: where they come from ?

- The commutator of boost with momentum

$$
\left[\hat{K}_{k}, \hat{P}_{k}\right]=i \hat{H}
$$

is expressed in the Euclidean by the WIs

$$
\int_{\partial R} d \sigma_{\mu}(x)\left\langle K_{\mu ; 0 k}(x) \bar{T}_{0 k}\left(y_{0}\right) O_{1} \ldots O_{n}\right\rangle_{c}=\left\langle\bar{T}_{00}\left(y_{0}\right) O_{1} \ldots O_{n}\right\rangle_{c}
$$

when the O_{i} are localized external fields and, as usual,

$$
K_{\mu ; \alpha \beta}=x_{\alpha} T_{\mu \beta}-x_{\beta} T_{\mu \alpha}
$$

- The finite-volume theory is translational invariant, and it has a conserved $T_{\mu \nu}$. Modified WIs associated to boosts constructed from those associated to translations. In infinite spatial volume

$$
L_{0}\left\langle\bar{T}_{01}\left(x_{0}\right) T_{01}(y)\right\rangle_{c}=\left\langle T_{00}\right\rangle-\left\langle T_{k k}\right\rangle
$$

- When $\boldsymbol{\xi} \neq 0$ odd derivatives in the ξ_{k} do not vanish anymore, and new interesting WIs hold. The first non-trivial one is

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{\xi_{k}}{1-\xi_{k}^{2}}\left\{\left\langle T_{00}\right\rangle_{\boldsymbol{\xi}}-\left\langle T_{k k}\right\rangle_{\boldsymbol{\xi}}\right\}
$$

which implies

$$
s=-\frac{L_{0}\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}}{\xi_{k}}\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}
$$

- By deriving twice with respect to the ξ_{k}

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{L_{0} \xi_{k}}{2} \sum_{i j}\left\langle\bar{T}_{0 i} T_{0 j}\right\rangle_{\boldsymbol{\xi}, c}\left[\delta_{i j}-\frac{\xi_{i} \xi_{j}}{\boldsymbol{\xi}^{2}}\right]
$$

which implies for instance

$$
s^{-1}=-\frac{1}{2\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}} \sum_{i j} \frac{\left\langle\bar{T}_{0 i} T_{0 j}\right\rangle_{\boldsymbol{\xi}, c}}{\left\langle T_{0 i}\right\rangle_{\boldsymbol{\xi}}\left\langle T_{0 j}\right\rangle_{\boldsymbol{\xi}}} \xi_{i} \xi_{j}\left[\delta_{i j}-\frac{\xi_{i} \xi_{j}}{\boldsymbol{\xi}^{2}}\right]
$$

- When $\boldsymbol{\xi} \neq 0$ odd derivatives in the ξ_{k} do not vanish anymore, and new interesting WIs hold. The first non-trivial one is

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{\xi_{k}}{1-\xi_{k}^{2}}\left\{\left\langle T_{00}\right\rangle_{\boldsymbol{\xi}}-\left\langle T_{k k}\right\rangle_{\boldsymbol{\xi}}\right\}
$$

which implies

$$
s=-\frac{L_{0}\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}}{\xi_{k}}\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}
$$

- By deriving twice with respect to the ξ_{k}

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{L_{0} \xi_{k}}{2} \sum_{i j}\left\langle\bar{T}_{0 i} T_{0 j}\right\rangle_{\boldsymbol{\xi}, c}\left[\delta_{i j}-\frac{\xi_{i} \xi_{j}}{\boldsymbol{\xi}^{2}}\right]
$$

which implies for instance

$$
\frac{c_{v}}{s^{2}}=-\frac{1}{2\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}} \sum_{i j} \frac{\left\langle\bar{T}_{0 i} T_{0 j}\right\rangle_{\boldsymbol{\xi}, c}}{\left\langle T_{0 i}\right\rangle_{\boldsymbol{\xi}}\left\langle T_{0 j}\right\rangle_{\boldsymbol{\xi}}} \frac{\xi_{i} \xi_{j}}{\boldsymbol{\xi}^{2}}\left[\left(1-2 \boldsymbol{\xi}^{2}\right) \delta_{i j}-3 \frac{\xi_{i} \xi_{j}}{\boldsymbol{\xi}^{2}}\right]
$$

- When $\boldsymbol{\xi} \neq 0$ odd derivatives in the ξ_{k} do not vanish anymore, and new interesting WIs hold. The first non-trivial one is

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{\xi_{k}}{1-\xi_{k}^{2}}\left\{\left\langle T_{00}\right\rangle_{\boldsymbol{\xi}}-\left\langle T_{k k}\right\rangle_{\boldsymbol{\xi}}\right\}
$$

which implies

$$
s=-\frac{L_{0}\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}}{\xi_{k}}\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}
$$

- By deriving twice with respect to the ξ_{k}

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{L_{0} \xi_{k}}{2} \sum_{i j}\left\langle\bar{T}_{0 i} T_{0 j}\right\rangle_{\boldsymbol{\xi}, c}\left[\delta_{i j}-\frac{\xi_{i} \xi_{j}}{\boldsymbol{\xi}^{2}}\right]
$$

- Note that also in this case:
* All operators at non-zero distance
* Number or components of EMT on the two sides different
* On the lattice they can be imposed to fix the renormalization of $T_{\mu \nu}$

Entropy density from the response to the shift

- The Entropy density can be computed as

$$
s=-\frac{L_{0}\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}}{\xi_{k}}\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}
$$

or as

$$
s=-\frac{\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}}{\xi_{k}} \lim _{V \rightarrow \infty} \frac{1}{V} \frac{\partial}{\partial \xi_{k}} \ln Z\left(L_{0}, \boldsymbol{\xi}\right)
$$

- With respect to the standard technique:
* No ultraviolet power divergent subtraction (zero temperature subtraction)
* On the lattice finite multiplicative renormalization constant fixed non-perturbatively by WIs

Path integrals with shifted boundary conditions: finite-size effects

- The leading finite-size contributions to the free energy are

$$
f\left(V_{\mathrm{sbc}}\right)-f\left(L_{0} \sqrt{1+\xi^{2}}\right)=\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\cdots
$$

where for $L_{k}=L$

$$
\mathcal{I}_{i}=\left.\frac{\gamma \nu}{2 \pi L_{0} L^{3}} \frac{1}{r} \frac{d}{d r}\left[\frac{e^{-M L r}}{r}\right]\right|_{r=r_{i}}, \quad r_{i}=\frac{\gamma}{\bar{\gamma}_{i}}, \quad \bar{\gamma}_{i}=1 / \sqrt{1+\sum_{k \neq i} \xi_{k}^{2}}
$$

with M and ν being the mass and the multiplicity of the lightest screening state

- Analogous formula for the entropy by noticing that

$$
\left\langle T_{0 k}\right\rangle_{V_{\mathrm{sbc}}}-\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=-\frac{\partial}{\partial \xi_{k}} \sum_{i=1}^{3} \mathcal{I}_{i}+\ldots
$$

- WIs can be derived analogously in finite volume. They are modified by terms which vanish exponentially in the thermodynamic limit
- A Yang-Mills theory can be defined on a discretized space-time so that gauge invariance is preserved
- The the gauge field $U_{\mu} \in \mathbf{S U}(3)$ resides on links
- The Wilson action is
$S_{G}[U]=\frac{\beta}{2} \sum_{x} \sum_{\mu, \nu}\left[1-\frac{1}{3} \operatorname{Re} \operatorname{Tr}\left\{U_{\mu \nu}(x)\right\}\right]$
where $\beta=6 / g_{0}^{2}$ and the plaquette is
$U_{\mu \nu}(x)=U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)$
- Discrete shifts in the boundary conditions can be implemented straightforwardly

Non-perturbative renormalization of $T_{\mu \nu}$

- On the lattice the Poincaré group is broken down to a discrete group and standard discretizations of $T_{\mu \nu}$ acquire finite ultraviolet renormalizations
- We focus on the SU(3) Yang-Mills. The analysis applies to other theories as well

$$
\begin{aligned}
& T_{\mu \nu}^{\mathrm{R}}=Z_{T}\left\{T_{\mu \nu}^{[1]}+z_{T} T_{\mu \nu}^{[3]}+z_{S}\left[T_{\mu \nu}^{[2]}-\left\langle T_{\mu \nu}^{[2]}\right\rangle_{0}\right]\right\} \\
& T_{\mu \nu}^{[1]}=\left(1-\delta_{\mu \nu}\right) \frac{1}{g_{0}^{2}}\left\{F_{\mu \alpha}^{a} F_{\nu \alpha}^{a}\right\} \\
& T_{\mu \nu}^{[2]}=\delta_{\mu \nu} \frac{1}{4 g_{0}^{2}} F_{\alpha \beta}^{a} F_{\alpha \beta}^{a} \\
& T_{\mu \nu}^{[3]}=\delta_{\mu \nu} \frac{1}{g_{0}^{2}}\left\{F_{\mu \alpha}^{a} F_{\mu \alpha}^{a}-\frac{1}{4} F_{\alpha \beta}^{a} F_{\alpha \beta}^{a}\right\}
\end{aligned}
$$

where

$$
F_{\mu \nu}^{a}(x)=-\frac{i}{4 a^{2}} \operatorname{Tr}\left\{\left[Q_{\mu \nu}(x)-Q_{\nu \mu}(x)\right] T^{a}\right\}, \quad Q_{\mu \nu}(x)=\sum \quad
$$

- The continuum relation

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{1}{L_{0}} \lim _{V \rightarrow \infty} \frac{1}{V} \frac{\partial}{\partial \xi_{k}} \ln Z\left(L_{0}, \boldsymbol{\xi}\right)
$$

can be imposed on the lattice to fix Z_{T}

$$
Z_{T}\left(g_{0}^{2}\right)=-\frac{\Delta f}{\Delta \xi_{k}} \frac{1}{\left\langle T_{0 k}^{[1]}\right\rangle_{\xi}}
$$

where the derivative in the shift is discretized by the symmetric finite difference

$$
\frac{\Delta f}{\Delta \xi_{k}}=\frac{1}{2 a V} \ln \left[\frac{Z\left(L_{0}, \boldsymbol{\xi}-a \hat{k} / L_{0}\right)}{Z\left(L_{0}, \boldsymbol{\xi}+a \hat{k} / L_{0}\right)}\right]
$$

- The final results for $Z_{T}\left(g_{0}^{2}\right)$ are well represented by

$$
Z_{T}\left(g_{0}^{2}\right)=\frac{1-0.4457 g_{0}^{2}}{1-0.7165 g_{0}^{2}}-0.2543 g_{0}^{4}+0.4357 g_{0}^{6}-0.5221 g_{0}^{8}
$$

with the error that varies from 0.4% up 0.7% in the range $0 \leq g_{0}^{2} \leq 1$

- The continuum relation

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{1}{L_{0}} \lim _{V \rightarrow \infty} \frac{1}{V} \frac{\partial}{\partial \xi_{k}} \ln Z\left(L_{0}, \boldsymbol{\xi}\right)
$$

can be imposed on the lattice to fix Z_{T}

$$
Z_{T}\left(g_{0}^{2}\right)=-\frac{\Delta f}{\Delta \xi_{k}} \frac{1}{\left\langle T_{0 k}^{[1]}\right\rangle_{\xi}}
$$

where the derivative in the shift is discretized by the symmetric finite difference

$$
\frac{\Delta f}{\Delta \xi_{k}}=\frac{1}{2 a V} \ln \left[\frac{Z\left(L_{0}, \boldsymbol{\xi}-a \hat{k} / L_{0}\right)}{Z\left(L_{0}, \boldsymbol{\xi}+a \hat{k} / L_{0}\right)}\right]
$$

- Within statistical errors, the non-perturbative determination starts to deviate significantly from the one-loop result [Caracciolo et al. 88, 90]

$$
Z_{T}\left(g_{0}^{2}\right)=1+0.27076 g_{0}^{2}
$$

already at $g_{0}^{2} \sim 0.25$

The triplet renormalization constant z_{T}

- The continuum relation

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{\xi_{k}}{1-\xi_{k}^{2}}\left\{\left\langle T_{00}\right\rangle_{\boldsymbol{\xi}}-\left\langle T_{k k}\right\rangle_{\boldsymbol{\xi}}\right\}
$$

is enforced on the lattice to determine z_{T}

$$
z_{T}\left(g_{0}^{2}\right)=\frac{1-\xi_{k}^{2}}{\xi_{k}} \frac{\left\langle T_{0 k}^{[1]}\right\rangle_{\xi}}{\left\langle T_{00}^{[3]}\right\rangle_{\xi}-\left\langle T_{k k}^{[3]}\right\rangle_{\xi}}
$$

with the condition $\frac{L \xi_{k}}{L_{0}\left(1+\xi_{k}^{2}\right)}=q \in \mathbb{Z}$

- The results for $z_{T}\left(g_{0}^{2}\right)$ are well represented by

$$
z_{T}\left(g_{0}^{2}\right)=\frac{1-0.5090 g_{0}^{2}}{1-0.4789 g_{0}^{2}}
$$

where the error grows linearly from 0.15% to 0.75% in the interval $0 \leq g_{0}^{2} \leq 1$

The triplet renormalization constant z_{T}

- The continuum relation

$$
\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}=\frac{\xi_{k}}{1-\xi_{k}^{2}}\left\{\left\langle T_{00}\right\rangle_{\boldsymbol{\xi}}-\left\langle T_{k k}\right\rangle_{\boldsymbol{\xi}}\right\}
$$

is enforced on the lattice to determine z_{T}

$$
z_{T}\left(g_{0}^{2}\right)=\frac{1-\xi_{k}^{2}}{\xi_{k}} \frac{\left\langle T_{0 k}^{[1]}\right\rangle_{\xi}}{\left\langle T_{00}^{[3]}\right\rangle_{\xi}-\left\langle T_{k k}^{[3]}\right\rangle_{\xi}}
$$

with the condition $\frac{L \xi_{k}}{L_{0}\left(1+\xi_{k}^{2}\right)}=q \in \mathbb{Z}$

- Within statistical errors, the non-perturbative determination starts to deviate significantly from the one-loop result [Caracciolo et al. 88, 90]

$$
z_{T}\left(g_{0}^{2}\right)=1-0.03008 g_{0}^{2}
$$

already at $g_{0}^{2} \sim 0.4$

Entropy density in the continuum

- At all temperatures the entropy density is obtained by extrapolating

$$
\frac{s}{s_{\mathrm{SB}}}=-\frac{45}{32 \pi^{2}} \frac{\left(1+\xi^{2}\right)}{\xi_{k}} \frac{Z_{T}\left\langle T_{0 k}^{[1]}\right\rangle_{\boldsymbol{\xi}}}{T^{4}}
$$

to the continuum limit

Entropy density in the continuum

- At all temperatures the entropy density is obtained by extrapolating

$$
\frac{s}{s_{\mathrm{SB}}}=-\frac{45}{32 \pi^{2}} \frac{\left(1+\xi^{2}\right)}{\xi_{k}} \frac{Z_{T}\left\langle T_{0 k}^{[1]}\right\rangle_{\xi}}{T^{4}}
$$

to the continuum limit

- Precision of $\sim 0.5 \%$ for all points
- At $T \sim 230 T_{c}$ the entropy still differs from the Stefan-Boltzmann value by $\sim 3 \%$

Entropy density in the continuum

- At all temperatures the entropy density is obtained by extrapolating

$$
\frac{s}{s_{\mathrm{SB}}}=-\frac{45}{32 \pi^{2}} \frac{\left(1+\xi^{2}\right)}{\xi_{k}} \frac{Z_{T}\left\langle T_{0 k}^{[1]}\right\rangle_{\boldsymbol{\xi}}}{T^{4}}
$$

to the continuum limit

- Precision of $\sim 0.5 \%$ for all points
- At $T \sim 230 T_{c}$ the entropy still differs from the Stefan-Boltzmann value by $\sim 3 \%$
- Results for $T \leq 4 T_{c}$ agree with [Boyd et al 96, Meyer 09]

Entropy density in the continuum

- At all temperatures the entropy density is obtained by extrapolating

$$
\frac{s}{s_{\mathrm{SB}}}=-\frac{45}{32 \pi^{2}} \frac{\left(1+\xi^{2}\right)}{\xi_{k}} \frac{Z_{T}\left\langle T_{0 k}^{[1]}\right\rangle_{\boldsymbol{\xi}}}{T^{4}}
$$

to the continuum limit

- Precision of $\sim 0.5 \%$ for all points
- At $T \sim 230 T_{c}$ the entropy still differs from the Stefan-Boltzmann value by $\sim 3 \%$
- Results for $T \leq 4 T_{c}$ agree with [Boyd et al 96, Meyer 09]
- For $T \geq 2 T_{c}$ agree with [Borsanyi et al 13] within errors. We observe a discrepancy of many (4 to 8) statistical sigmas with these data, however, for $T \leq 2 T_{c}$

Entropy density in the continuum

- At all temperatures the entropy density is obtained by extrapolating

$$
\frac{s}{s_{\mathrm{SB}}}=-\frac{45}{32 \pi^{2}} \frac{\left(1+\xi^{2}\right)}{\xi_{k}} \frac{Z_{T}\left\langle T_{0 k}^{[1]}\right\rangle_{\boldsymbol{\xi}}}{T^{4}}
$$

to the continuum limit

- Precision of $\sim 0.5 \%$ for all points
- At $T \sim 230 T_{c}$ the entropy still differs from the Stefan-Boltzmann value by $\sim 3 \%$
- Results for $T \leq 4 T_{c}$ agree with [Boyd et al 96, Meyer 09]
- For $T \geq 2 T_{c}$ agree with [Borsanyi et al 13] within errors. We observe a discrepancy of many (4 to 8) statistical sigmas with these data, however, for $T \leq 2 T_{c}$
- When matching with perturbation theory (blue line), the series has oscillating coeffs. At $T \sim 230 T_{c}$, the $O\left(g^{6}\right)$ is roughly 50% of total correction with respect to SB

Conclusions and outlook (I)

- Lorentz invariance implies a great degree of redundancy in defining a relativistic thermal theory in the Euclidean path-integral formalism
- In the thermodynamic limit, the orientation of the compact periodic direction with respect to the coordinate axes can be chosen at will and only its length is relevant

$$
f\left(L_{0} \sqrt{1+\boldsymbol{\xi}^{2}}\right)=-\lim _{V \rightarrow \infty} \frac{1}{L_{0} V} \ln Z\left(L_{0}, \boldsymbol{\xi}\right)
$$

- The redundancy in the description implies that the total energy and momentum distributions in the canonical ensemble are related
- For a finite-size system, the lengths of the box dimensions break this invariance. Being a soft breaking, however, interesting exact Ward Identities survive
- As in the standard case, if the lightest screening mass $M \neq 0$, leading finite-size corrections are exponentially small in ($M L$)

Conclusions and outlook (II)

- When the theory is regularized on a lattice, the overall orientation of the periodic directions with respect to the lattice coordinate system affects renormalized observables at the level of lattice artifacts
- As the cutoff is removed, the artifacts are suppressed by a power of the spacing
- The flexibility in the lattice formulation added by the introduction of a triplet $\boldsymbol{\xi}$ of (renormalized) parameters has interesting consequences:
* WIs to renormalize non-perturbatively $T_{\mu \nu}$
* Simpler ways to compute thermodynamic potentials

$$
s=-\frac{Z_{T} L_{0}\left(1+\boldsymbol{\xi}^{2}\right)^{3 / 2}}{\xi_{k}}\left\langle T_{0 k}\right\rangle_{V_{\mathrm{sbc}}}
$$

*...

- In the Yang-Mills theory we defined non-perturbatively $T_{\mu \nu}$, and we computed the entropy density over several orders of magnitude in T. Discretization and statistical errors are at the level of a few per mille in both cases

Singlet and trace anomaly

$$
\frac{\partial}{\partial \xi_{k}}\left\langle T_{\mu \mu}\right\rangle_{\boldsymbol{\xi}}=\frac{1}{\left(1+\xi^{2}\right)^{2}} \frac{\partial}{\partial \xi_{k}}\left[\frac{\left(1+\xi^{2}\right)^{3}}{\xi_{k}}\left\langle T_{0 k}\right\rangle_{\boldsymbol{\xi}}\right] .
$$

where

$$
T_{\mu \mu}=\frac{b_{0}}{2}\left\{F_{\alpha \beta}^{a} F_{\alpha \beta}^{a}\right\}^{\mathrm{RGI}} .
$$

with

$$
\left\{F_{\alpha \beta}^{a} F_{\alpha \beta}^{a}\right\}^{\mathrm{RGI}}=-\frac{\beta}{b_{0} g^{3}}\left\{F_{\alpha \beta}^{a} F_{\alpha \beta}^{a}\right\}^{R}
$$

