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Energy-momentum tensor on the lattice: the problem

On the lattice the Poincaré group is broken down to a discrete group and standard

discretizations of Tµν acquire finite ultraviolet renormalizations

We focus on the SU(3) Yang–Mills. The analysis applies to other theories as well
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T

[1]
µν + z

T
T

[3]
µν + z

S

[
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[2]
µν − 〈T

[2]
µν 〉0

]}
.

T
[1]
µν = (1− δµν)

1

g20

{
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a
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Non-perturbative definition of TR
µν means knowing Z

T
, z

T
and z

S
so that in the

continuum limit

∂µ〈T
R
µν(x)O(0)〉 = 0 , x 6= 0
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Energy-momentum tensor on the lattice: recent progress

Perturbative analysis and 1-loop computation
[Caracciolo, Curci, Menotti, Pelissetto 88-92]

Shifted boundary conditions in thermal theory and related WIs
[LG, Meyer 11-13]

Energy-momentum tensor from the Yang-Mills gradient flow
[Makino, Suzuki 13-15; FlowQCD Coll. 14-16]

Space-time symmetries and the Yang-Mills gradient flow
[Del Debbio, Patella, Rago 13-15]

Non-perturbative renormalization of Tµν

[LG, Pepe 14-16]
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Thermal field theories in the Euclidean path integral formalism

From textbooks

Z(L0) = Tr
{
e−L0Ĥ

}

where the temperature is T = 1/L0

φ(x) = φ(x+ Vpbcm) m ∈ Z
4

Vpbc =




L0 0 0 0

0 L1 0 0

0 0 L2 0

0 0 0 L3




The basic thermodynamic quantities are defined as

f = −
1

L0V
lnZ(L0) e = −

1

V

∂

∂L0
lnZ(L0) s = −

L2
0

V

∂

∂L0

{ 1

L0
lnZ(L0)

}

which in the thermodynamic limit lead to

p = −f s = L0(e+ p) cv = −L0
∂

∂L0
s
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

We are interested in the partition function

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ·P̂ )

}

φ(x) = φ(x+Vsbcm) m ∈ Z
4

Vsbc =




L0 0 0 0

L0ξ1 L1 0 0

L0ξ2 0 L2 0

L0ξ3 0 0 L3
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

We are interested in the partition function

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ1P̂1)

}

where we have chosen ξ = {ξ1, 0, 0}

By making an Euclidean ”boost” rotation

γ1 =
1√

1 + ξ21
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Path integrals with shifted boundary conditions: infinite-volume limit (I)

We are interested in the partition function

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ1P̂1)

}

where we have chosen ξ = {ξ1, 0, 0}

By making an Euclidean ”boost” rotation

γ1 =
1√

1 + ξ21

Lorentz [SO(4)] invariance implies

Z(L0, ξ) = Tr
{
e−L1γ1(H̃−iξ1P̃0)

}

φ(x) = φ(x+Vsbcm) m ∈ Z
4

Vsbc =




L0 0 0 0

L0ξ1 L1 0 0

0 0 L2 0

0 0 0 L3




Λ =




γ1 γ1ξ1 0 0

−γ1ξ1 γ1 0 0

0 0 1 0

0 0 0 1




V ′
sbc=ΛVsbc=




L0/γ1 L1γ1ξ1 0 0

0 L1γ1 0 0

0 0 L2 0

0 0 0 L3
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Path integrals with shifted boundary conditions: infinite-volume limit (II)

Assuming that H̃ has a translationally-invariant

vacuum and a mass gap [ξ = {ξ1, 0, 0}]

Z(L0, ξ) = Tr
{
e−L1γ1(H̃−iξ1P̃0)

}

the right hand side becomes insensitive to the

phase in the limit L1 → ∞ at fixed ξ1

f
(
L0

√
1 + ξ21

)
= − lim

V →∞

1

L0V
lnZ(L0, ξ)

Thanks to cubic symmetry (infinite volume)

f
(
L0, ξ

)
= f

(
L0

√
1 + ξ2,0

)

for a generic shift ξ

V ′
sbc=ΛVsbc=




L0/γ1 L1γ1ξ1 0 0

0 L1γ1 0 0

0 0 L2 0

0 0 0 L3




V ′′
sbc =




L0/γ1 0 0 0

0 L1γ1 0 0

0 0 L2 0

0 0 0 L3




φ(x0,x) = φ(x0+L0,x+L0ξ)

L. Giusti – CERN June 2016 – p. 7/22



Thermal field theory in a moving frame

If Ĥ and P̂ are the Hamiltonian and the total momentum operator expressed in a

moving frame, the standard partition function is

Z(L0,v) ≡ Tr
{
e−L0 (Ĥ−v·P̂ )

}

If we continue Z to imaginary velocities v = iξ

Z(L0, ξ) = Tr {e−L0(Ĥ−iξ·P̂ )}

The functional dependence f(L0

√
1 + ξ2) is consistent with modern thermodynamic

arguments on the Lorentz transformation of the temperature and the free-energy
[Ott 63; Arzelies 65; see Przanowski 11 for a recent discussion]

In the zero-temperature limit the invariance of the theory (and of its vacuum) under

the Poincaré group forces its free energy to be independent of the shift ξ

At non-zero temperature the finite length L0 breaks SO(4) softly, and the free energy

depends on the shift (velocity) but only through the combination β = L0

√
1 + ξ2
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Cumulants of the energy and the momentum distributions

The cumulants of the momentum distribution are

k{2n,0,0} =
1

V
〈P̂ 2n

1 〉c =
(−1)n+1

L2n−1
0

∂2n

∂ξ2n1
f
(
L0

√
1 + ξ2

)∣∣∣
ξ=0
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Cumulants of the energy and the momentum distributions
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1

V
〈 Ĥn 〉c = (−1)n+1

[
n

∂n−1

∂Ln−1
0

+ L0
∂n

∂Ln
0

]
f
(
L0

√
1 + ξ2

)∣∣∣
ξ=0

n = 2, 3 . . .

which imply that

k{2n,0,0} =
(2n− 1)!!

(2L2
0)

n

n∑

ℓ=1

(2n− ℓ)!

ℓ!(n− ℓ)!
(2L0)

ℓ cℓ

the total energy and momentum distributions of a relativistic thermal theory are related
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Cumulants of the energy and the momentum distributions

The cumulants of the momentum distribution are

k{2n,0,0}

L0
= (−1)n+1 (2n− 1)!!

{ 1

L0

∂

∂L0

}n
f
(
L0

√
1 + ξ2
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ξ=0

The cumulants of the energy distribution are

cn =
1

V
〈 Ĥn 〉c = (−1)n+1

[
n

∂n−1

∂Ln−1
0

+ L0
∂n

∂Ln
0

]
f
(
L0

√
1 + ξ2

)∣∣∣
ξ=0

n = 2, 3 . . .

Up to n = 4 it reads

L0 k{2,0,0} = c1

L3
0 k{4,0,0} = 9 c1 + 3L0 c2 ,

L5
0 k{6,0,0} = 225 c1 + 90L0 c2 + 15L2

0 c3 ,

L7
0 k{8,0,0} = 11025 c1 + 4725L0 c2 + 1050L2

0 c3 + 105L3
0 c4
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Cumulants of the energy and the momentum distributions

The cumulants of the momentum distribution are

k{2n,0,0}

L0
= (−1)n+1 (2n− 1)!!
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L0

∂

∂L0

}n
f
(
L0

√
1 + ξ2
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The cumulants of the energy distribution are

cn =
1

V
〈 Ĥn 〉c = (−1)n+1

[
n

∂n−1

∂Ln−1
0

+ L0
∂n

∂Ln
0

]
f
(
L0

√
1 + ξ2

)∣∣∣
ξ=0

n = 2, 3 . . .

Thermodynamic potentials can be extracted from the momentum cumulants

k{2,0,0} = T (e+ p) = T 2 s

k{4,0,0} = 3T 4 (cv + 3s)

by remembering that ∂p
∂T

= s
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Euclidean Ward identities for correlators of Tµν

In the path integral formalism

L0 〈T 01 T01〉c = 〈T00〉 − 〈T11〉

L3
0 〈T 01 T 01 T 01 T01〉c = 9 〈T11〉 − 9 〈T00〉+ 3L0 〈T 00T00〉c

. . .

where 〈T00〉 = −e, 〈T11〉 = p, P̂1 → −iT 01 and

Tµν(x0) =

∫
d3xTµν(x)

Note that:

∗ All operators at non-zero distance

∗ Number of EMT on the two sides different

∗ On the lattice they can be imposed to fix the renormalization of Tµν
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Ward identities in thermal theory: where they come from ?

The commutator of boost with momentum

[K̂k, P̂k] = iĤ

is expressed in the Euclidean by the WIs

−

0

∂ R ∂ R

Oi

Tok

_

_

X

∫

∂R
dσµ(x) 〈Kµ;0k(x)T 0k(y0)O1 . . . On〉c = 〈T 00(y0)O1 . . . On〉c

when the Oi are localized external fields and, as usual,

Kµ;αβ = xαTµβ − xβTµα

In a 4D box boost transformations are incompatible with (periodic) bc.

WIs associated with SO(4) rotations must be modified by finite-size contributions
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Ward identities in thermal theory: where they come from ?

The commutator of boost with momentum

[K̂k, P̂k] = iĤ

is expressed in the Euclidean by the WIs

−

0

∂ R ∂ R

Oi

Tok

_

_

X

∫

∂R
dσµ(x) 〈Kµ;0k(x)T 0k(y0)O1 . . . On〉c = 〈T 00(y0)O1 . . . On〉c

when the Oi are localized external fields and, as usual,

Kµ;αβ = xαTµβ − xβTµα

The finite-volume theory is translational invariant, and it has a conserved Tµν .

Modified WIs associated to boosts constructed from those associated to translations.
In infinite spatial volume

L0 〈T 01(x0)T01(y)〉c = 〈T00〉 − 〈Tkk〉
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Ward identities at non-zero shift

When ξ 6= 0 odd derivatives in the ξk do not vanish anymore, and new interesting WIs

hold. The first non-trivial one is

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

which implies

s = −
L0 (1 + ξ2)3/2

ξk
〈T0k〉ξ

By deriving twice with respect to the ξk

〈T0k〉ξ =
L0ξk

2

∑

ij

〈
T 0i T0j

〉
ξ, c

[
δij −

ξi ξj

ξ2

]

which implies for instance

s−1 = −
1

2(1 + ξ2)3/2

∑

ij

〈
T 0i T0j

〉
ξ, c

〈T0i〉ξ〈T0j〉ξ
ξiξj

[
δij −

ξiξj

ξ2

]
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Ward identities at non-zero shift

When ξ 6= 0 odd derivatives in the ξk do not vanish anymore, and new interesting WIs

hold. The first non-trivial one is

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

which implies

s = −
L0 (1 + ξ2)3/2

ξk
〈T0k〉ξ

By deriving twice with respect to the ξk

〈T0k〉ξ =
L0ξk

2

∑

ij

〈
T 0i T0j

〉
ξ, c

[
δij −

ξi ξj

ξ2

]

which implies for instance

cv

s2
= −

1

2(1 + ξ2)3/2

∑

ij

〈
T 0i T0j

〉
ξ, c

〈T0i〉ξ〈T0j〉ξ

ξiξj

ξ2

[
(1− 2ξ2)δij − 3

ξiξj

ξ2

]
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Ward identities at non-zero shift

When ξ 6= 0 odd derivatives in the ξk do not vanish anymore, and new interesting WIs

hold. The first non-trivial one is

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

which implies

s = −
L0 (1 + ξ2)3/2

ξk
〈T0k〉ξ

By deriving twice with respect to the ξk

〈T0k〉ξ =
L0ξk

2

∑

ij

〈
T 0i T0j

〉
ξ, c

[
δij −

ξi ξj

ξ2

]

Note that also in this case:

∗ All operators at non-zero distance

∗ Number or components of EMT on the two sides different

∗ On the lattice they can be imposed to fix the renormalization of Tµν
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Entropy density from the response to the shift

The Entropy density can be computed as

s = −
L0 (1 + ξ2)3/2

ξk
〈T0k〉ξ

or as

s = −
(1 + ξ2)3/2

ξk
lim

V →∞

1

V

∂

∂ξk
lnZ(L0, ξ)

With respect to the standard technique:

∗ No ultraviolet power divergent subtraction

(zero temperature subtraction)

∗ On the lattice finite multiplicative renormalization

constant fixed non-perturbatively by WIs
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Path integrals with shifted boundary conditions: finite-size effects

The leading finite-size contributions to the free energy are

f(Vsbc)− f
(
L0

√
1 + ξ2

)
= I1 + I2 + I3 + · · ·

where for Lk = L

Ii =
γν

2πL0L3

1

r

d

dr

[ e−MLr

r

]∣∣∣
r=ri

, ri =
γ

γ̄i
, γ̄i = 1/

√
1 +

∑

k 6=i

ξ2k

with M and ν being the mass and the multiplicity of the lightest screening state

Analogous formula for the entropy by noticing that

〈T0k〉Vsbc
− 〈T0k〉ξ = −

∂

∂ξk

3∑

i=1

Ii + . . .

WIs can be derived analogously in finite volume. They are modified by terms which

vanish exponentially in the thermodynamic limit
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Lattice gauge theory [Wilson 74]

A Yang-Mills theory can be defined on a

discretized space-time so that gauge

invariance is preserved

The the gauge field Uµ ∈ SU(3) resides on

links

The Wilson action is

SG[U ] =
β

2

∑

x

∑

µ,ν

[
1−

1

3
ReTr

{
Uµν(x)

}]

where β = 6/g20 and the plaquette is

Uµν(x) = Uµ(x)Uν(x+ µ̂)U†
µ(x+ ν̂)U†

ν (x)

Discrete shifts in the boundary conditions can

be implemented straightforwardly

a
L

x x + µ

x + ν x + µ + ν

U †
ν
(x)

Uµ(x)
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Non-perturbative renormalization of Tµν

On the lattice the Poincaré group is broken down to a discrete group and standard

discretizations of Tµν acquire finite ultraviolet renormalizations

We focus on the SU(3) Yang–Mills. The analysis applies to other theories as well

TR
µν = Z

T

{
T

[1]
µν + z

T
T

[3]
µν + z

S

[
T

[2]
µν − 〈T

[2]
µν 〉0

]}
.

T
[1]
µν = (1− δµν)

1

g20

{
Fa
µαF

a
να

}

T
[2]
µν = δµν

1

4g20
Fa
αβF

a
αβ

T
[3]
µν = δµν

1

g20

{
Fa
µαF

a
µα −

1

4
Fa
αβF

a
αβ

}

where

Fa
µν(x) = −

i

4a2
Tr

{[
Qµν(x)−Qνµ(x)

]
Ta

}
, Qµν(x) =

∑

L. Giusti – CERN June 2016 – p. 16/22



The sextet renormalization constant ZT

The continuum relation

〈T0k〉ξ =
1

L0
lim

V →∞

1

V

∂

∂ξk
lnZ(L0, ξ)

can be imposed on the lattice to fix ZT

Z
T
(g20) = −

∆f

∆ξk

1

〈T
[1]
0k 〉ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
T

fit
a/L

0
-> 0

1 loop PT

where the derivative in the shift is discretized by the symmetric finite difference

∆f

∆ξk
=

1

2aV
ln

[Z(L0, ξ − ak̂/L0)

Z(L0, ξ + ak̂/L0)

]

The final results for Z
T
(g20) are well represented by

Z
T
(g20) =

1− 0.4457 g20
1− 0.7165 g20

− 0.2543 g40 + 0.4357 g60 − 0.5221 g80

with the error that varies from 0.4% up 0.7% in the range 0 ≤ g20 ≤ 1
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The sextet renormalization constant ZT

The continuum relation

〈T0k〉ξ =
1

L0
lim

V →∞

1

V

∂

∂ξk
lnZ(L0, ξ)

can be imposed on the lattice to fix ZT

Z
T
(g20) = −

∆f

∆ξk

1

〈T
[1]
0k 〉ξ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Z
T

fit
a/L

0
-> 0

1 loop PT

where the derivative in the shift is discretized by the symmetric finite difference

∆f

∆ξk
=

1

2aV
ln

[Z(L0, ξ − ak̂/L0)

Z(L0, ξ + ak̂/L0)

]

Within statistical errors, the non-perturbative determination starts to deviate

significantly from the one-loop result [Caracciolo et al. 88, 90]

Z
T
(g20) = 1 + 0.27076 g20

already at g20 ∼ 0.25
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The triplet renormalization constant z
T

The continuum relation

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

is enforced on the lattice to determine z
T

z
T
(g20) =

1− ξ2k
ξk

〈T
[1]
0k 〉ξ

〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ

with the condition
L ξk

L0(1+ξ2
k
)
= q ∈ Z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g
0

2

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

z
T

fit
a/L

0
=0 

1 loop PT

The results for z
T
(g20) are well represented by

z
T
(g20) =

1− 0.5090 g20
1− 0.4789 g20

where the error grows linearly from 0.15% to 0.75% in the interval 0 ≤ g20 ≤ 1
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The triplet renormalization constant z
T

The continuum relation

〈T0k〉ξ =
ξk

1− ξ2k

{
〈T00〉ξ − 〈Tkk〉ξ

}

is enforced on the lattice to determine z
T

z
T
(g20) =

1− ξ2k
ξk

〈T
[1]
0k 〉ξ

〈T
[3]
00 〉ξ − 〈T

[3]
kk 〉ξ

with the condition
L ξk

L0(1+ξ2
k
)
= q ∈ Z
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Within statistical errors, the non-perturbative determination starts to deviate

significantly from the one-loop result [Caracciolo et al. 88, 90]

z
T
(g20) = 1− 0.03008 g20

already at g20 ∼ 0.4
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Entropy density in the continuum

At all temperatures the entropy

density is obtained by extrapolating
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Results for T ≤ 4Tc agree with [Boyd et al 96, Meyer 09]

For T ≥ 2Tc agree with [Borsanyi et al 13] within errors. We observe a discrepancy of

many (4 to 8) statistical sigmas with these data, however, for T ≤ 2Tc
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At T ∼ 230Tc the entropy still differs from the Stefan-Boltzmann value by ∼ 3%

Results for T ≤ 4Tc agree with [Boyd et al 96, Meyer 09]

For T ≥ 2Tc agree with [Borsanyi et al 13] within errors. We observe a discrepancy of

many (4 to 8) statistical sigmas with these data, however, for T ≤ 2Tc

When matching with perturbation theory (blue line), the series has oscillating coeffs.

At T ∼ 230Tc, the O(g6) is roughly 50% of total correction with respect to SB
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Conclusions and outlook (I)

Lorentz invariance implies a great degree of redundancy in defining a relativistic

thermal theory in the Euclidean path-integral formalism

In the thermodynamic limit, the orientation of the compact periodic direction with

respect to the coordinate axes can be chosen at will and only its length is relevant

f
(
L0

√
1 + ξ2

)
= − lim

V →∞

1

L0V
lnZ(L0, ξ)

The redundancy in the description implies that the total energy and momentum

distributions in the canonical ensemble are related

For a finite-size system, the lengths of the box dimensions break this invariance.

Being a soft breaking, however, interesting exact Ward Identities survive

As in the standard case, if the lightest screening mass M 6= 0, leading finite-size

corrections are exponentially small in (ML)
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Conclusions and outlook (II)

When the theory is regularized on a lattice, the overall orientation of the periodic

directions with respect to the lattice coordinate system affects renormalized

observables at the level of lattice artifacts

As the cutoff is removed, the artifacts are suppressed by a power of the spacing

The flexibility in the lattice formulation added by the introduction of a triplet ξ of

(renormalized) parameters has interesting consequences:

∗ WIs to renormalize non-perturbatively Tµν

∗ Simpler ways to compute thermodynamic potentials

s = −
ZTL0(1 + ξ2)3/2

ξk
〈T0k〉Vsbc

∗ . . .

In the Yang–Mills theory we defined non-perturbatively Tµν , and we computed the

entropy density over several orders of magnitude in T . Discretization and statistical

errors are at the level of a few per mille in both cases
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Singlet and trace anomaly

∂

∂ξk
〈Tµµ〉ξ =

1

(1 + ξ2)2
∂

∂ξk

[
(1 + ξ2)3

ξk
〈T0k〉ξ

]
.

where

Tµµ =
b0

2
{Fa

αβF
a
αβ}

RGI .

with

{Fa
αβF

a
αβ}

RGI = −
β

b0g3
{Fa

αβF
a
αβ}

R

L. Giusti – CERN June 2016 – p. 22/22


	hspace {0.4cm} Outline
	hspace {0.4cm} Outline

	hspace {0.4cm} Energy-momentum tensor on the lattice: the problem
	hspace {0.4cm} Energy-momentum tensor on the lattice: recent progress
	hspace {0.4cm} Thermal field theories in the Euclidean path integral formalism
	hspace {0.4cm} Path integrals with shifted boundary conditions: infinite-volume limit (I)
	hspace {0.4cm} Path integrals with shifted boundary conditions: infinite-volume limit (I)
	hspace {0.4cm} Path integrals with shifted boundary conditions: infinite-volume limit (I)
	hspace {0.4cm} Path integrals with shifted boundary conditions: infinite-volume limit (I)

	hspace {0.4cm} Path integrals with shifted boundary conditions: infinite-volume limit (II)
	hspace {0.4cm} Thermal field theory in a moving frame
	hspace {0.4cm} Cumulants of the energy and the momentum distributions
	hspace {0.4cm} Cumulants of the energy and the momentum distributions
	hspace {0.4cm} Cumulants of the energy and the momentum distributions
	hspace {0.4cm} Cumulants of the energy and the momentum distributions
	hspace {0.4cm} Cumulants of the energy and the momentum distributions
	hspace {0.4cm} Cumulants of the energy and the momentum distributions

	hspace {0.4cm} Euclidean Ward identities for correlators of ${overline T}_{mu 
u }$
	hspace {0.4cm} Ward identities in thermal theory: where they come from ?
	hspace {0.4cm} Ward identities in thermal theory: where they come from ?

	hspace {0.4cm} Ward identities at non-zero shift
	hspace {0.4cm} Ward identities at non-zero shift
	hspace {0.4cm} Ward identities at non-zero shift

	hspace {0.4cm} Entropy density from the response to the shift
	hspace {0.4cm} Path integrals with shifted boundary conditions: finite-size effects
	hspace {0.4cm} Lattice gauge theory {�lack slidecite {[Wilson 74]}}
	hspace {0.4cm} Non-perturbative renormalization of $T_{mu 
u }$
	hspace {0.4cm} The sextet renormalization constant $Z_T$
	hspace {0.4cm} The sextet renormalization constant $Z_T$

	hspace {0.4cm} The triplet renormalization constant $z_{_T}$
	hspace {0.4cm} The triplet renormalization constant $z_{_T}$

	hspace {0.4cm} Entropy density in the continuum
	hspace {0.4cm} Entropy density in the continuum
	hspace {0.4cm} Entropy density in the continuum
	hspace {0.4cm} Entropy density in the continuum
	hspace {0.4cm} Entropy density in the continuum

	hspace {0.4cm} Conclusions and outlook (I)
	hspace {0.4cm} Conclusions and outlook (II)
	hspace {0.4cm} Singlet and trace anomaly

