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Conformal Field Theories (CFTs) play a 
fundamental role in theoretical physics

They are the starting and ending points of 
renormalization group flows in QFTs

They describe second order phase transitions in critical phenomena

They are an essential part of string theory and quantum 
gravity by means of the AdS/CFT correspondence

Introduction and Motivation  

In particular, using AdS/CFT, one might hope to shed light on deep and 
hard quantum gravity problems by rephrasing them in a CFT context

Several emergent phenomena arise in the IR end-point CFT 
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Typically such CFTs are strongly coupled and  difficult to study

Expansions such as large N, ✏- expansion, very useful but still approximations

It would be desirable to exploit the full power of conformal 
symmetry to get first principles results

Luckily enough, this is possible and goes under the name of the 
conformal bootstrap or simply bootstrap approach 

Advocated in the 70’s by [Ferrara, Grillo, Gatto ’73; Polyakov, ’74] it 
didn’t receive too much attention until recently, where it has been shown 

to be of interest for CFTs with d>2 [Rattazzi et al, 0807.0004]
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Basic idea in numerical analysis is to make some assumption about the 
structure of some CFT and check if it is consistent with fundamental principles 

such as unitarity and crossing symmetry. If it is not, that CFT is ruled out.

The CFT does not need to have a Lagrangian description. In fact, in bootstrap 
analysis a CFT is axiomatically defined by the so called CFT data.

Recall that the conformal group in d euclidean dimensions is SO(d+1,1) 

In addition to the usual translation and rotation generators PM , JMN

we have now the dilatations and the special conformal generators D, KM

Great progress has been achieved recently using bootstrap techniques, using 
both analytical and numerical techniques (no time to review them here)

In this talk we will focus on aspects related to the numerical bootstrap
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The basic operators of a CFT are the so called primary operators 

[KM ,O(0)] = 0

They are characterized by their scaling 
dimension and SO(d) “spin” quantum numbers

[D,O(0)] = i�O(0)

The spectrum of a CFT is given by the set of its primary operators.  
The interactions of a CFT are given by the set of three-point functions 
among its primary operators.  These are uniquely fixed by conformal 

symmetry, up to some constants, the three-point coefficients �ijk

The CFT data are defined as

• Spectrum of primary operators (scaling 
dimensions         and spins     ) 

• Their three point function coefficients �ijk

�i li



Simplest four-point function: identical scalars.
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The dynamical information of the CFT is encoded in the function                        g(u, v)

Four-point correlation functions are not kinematically determined, 
because with four points we can construct two independent 

conformal invariant scalar quantities, called cross ratios:

x

2
ij = (xi � xj)M (xi � xj)

M

Conformal symmetry allows us to fix all the higher point 
functions of the theory in terms of the CFT data. If they 

are known, in principle the theory is solvable
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Using the Operator Product Expansion (OPE), 
we can relate g(u,v) to the CFT data

�(x)�(0) = x

�2� +
X

O
���OT M1...Ml(x)OM1...Ml(0) + . . .

T M1...Ml(x) are determined tensor structure coefficients

Taking the OPE between two pairs of operators gives

g(u, v) = 1 +
X

l,�

�2
��O�,l

g�,l(u, v)

Sum over all symmetric traceless primary 
operators in the OPE of the two scalars. 

���O is the coe�cient of the h��Oi three-point function

The functions g�,l(u, v), contrary to g(u, v), are kinematically determined

For each primary of dimension � and spin l, g�,l(u, v) encodes

the contribution of all its descendants in the exchange.



These functions are called conformal blocks and are 
the key players in the conformal bootstrap 

In odd dimensions they can be obtained recursively

The conformal blocks for external scalar operators exchanging traceless 
symmetric operators of spin s is known for any s. For even space-time 

dimension d=2,4,6 they are known in a closed and compact form.
[Dolan,Osborn, hep-th/0011040, hep-th/0309180 ]

The two key principles of the bootstrap are crossing symmetry 
and unitarity (the latter not always necessary) 

Unitarity: �2
��O > 0
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Demanding that the OPE in two different pairings (s and t channels) 
gives the same result, we get a crossing symmetry constraint

Fd,�,l(u, v) =
vdg�,l(u, v)� udg�,l(v, u)

ud � vd

X

�,l

�2
��OFd,�,l(u, v) = 1

In terms of �2
��O crossing equation is a linear equation

Useful variables: u = zz̄ v = (1� z)(1� z̄)

In euclidean space, z̄ = z⇤.

In Minkowski space, z and z̄ independent real variables.

Crossing (bootstrap) equation typically studied at a single point:

u = v = 1
4 , i.e. z = z̄ = 1

2

Different numerical approaches, based on well 
developed linear programming techniques
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A possible way to get bounds is by applying a 
functional to the bootstrap equation

↵(f(z, z̄)) =
X

m+nND

amn@
m
z @n

z̄ f(z, z̄)|z=z̄=1/2

Assume a specific operator O0 is in the theory.

Normalize ↵: ↵(F�0(z, z̄)) = 1

Look for ↵ such that ↵(F�(z, z̄)) > 0, � 6= �0

�2
��O0

= ↵(1)�
X

� 6=�0

�2
��O↵(F�(z, z̄))  ↵(1)

If ↵(1) < 0 - assumption wrong. The operator O0 cannot be in the theory

If ↵(1) > 0 - The operator O0 can be in the theory.

Upper bound on OPE coe�cient.
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Typical generic bootstrap results
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One can also study a specific CFT if 
one knows where to look at 
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Drawback

Large number of operators should be included in the bootstrap 
equation, numerics quite demanding (but way less than Monte Carlo)

Any, even limited, analytical understanding difficult

It would be desirable to have a more “effective” 
approach where less operators are included

Aim of this talk is to implement Hogervorst and 
Rychkov’s proposal and show that it works!

An approach of this kind where a few operators are considered has 
been proposed by Gliozzi, but it is not very rigorous 

 Another approach, with more operators than Gliozzi’s idea, was advocated 
by Hogervorst and Rychkov, 1303.1111, but never implemented so far 
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Convergence of the OPE

Recall

The convergence of the above sum is exponential. 

[Pappadopulo et al, 1208.6449]

g(u, v) = 1 +
X

l,�

�2
��O�,l

g�,l(z, z̄)

Sum converges for any value of z and z̄, but the real line z = z̄ = x 2 [1,1).

⇢(z) =
z

(1 +
p
1� z)2

���
X

���⇤

�2
O g�,l(z, z̄)

���  R(z, z̄)

R(z, z̄) ⌘ (� log |⇢(z)|)�4��
2

4��

�(4�� + 1)

�(4�� + 1,��⇤ log |⇢(z)|)

The estimate of its remainder when truncated is known for any d>2 for �⇤ � 1
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When z = z̄ ! 1

The limit is saturated by generalized free fields (i.e. free fields in AdS)

Estimate of the remainder recently improved for d=3 and d=4 CFTs

[Rychkov, Yvernay 1510.08486]

(� log |⇢(z)|)�4��
2

4��

�(4�� + 1)

�(4�� + 1,��⇤ log |⇢(z)|) ! |1� z|�2��

g(u, v)GFT = 1 + |z|2�� +
⇣ |z|
|1� z|

⌘2��

! |1� z|�2��

For large scaling dimensions any CFT resembles a generalized free theory

Euclidean version of a known result in Minkowski signature  
[Fitzpatrick et al, 1212.3616; Komargodski, Zhiboedov, 1212.4103]
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Bootstrapping with Multiple Points

X

�,l

�2
��OFd,�,l(u, v) = 1

Recall bootstrap equation:

Fd,�,l(u, v) =
vdg�,l(u, v)� udg�,l(v, u)

ud � vd

Rewrite as
X

�<�⇤

�2
O
⇣
v��g�,l(u, v)� u��g�,l(v, u)

⌘
= u�� � v�� + E(z, z̄)

|E(z, z̄)|  E
max

(z, z̄) ⌘ v�� R(z, z̄) + u�� R(1� z, 1� z̄)

and use estimate of the remainder
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We have now an effective set of bootstrap inequalities 
involving operators up to some given dimension �⇤

Evaluate the equation for different values of z and numerically 
solve for the set of inequalities (no need of functional) 

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯
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Results

There are two key parameters in the effective bootstrap: 

• N the number of points sampled in the z plane 
• the cut-off in the operator dimension�⇤

Below some results for d=3 CFTs with or 
without a global O(n) global symmetry
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�⇤ = 16
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�⇤ = 16 N=80 points
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�⇤ = 16 N=80 points
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O(20), N=100 points
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 [1] Campostrini, Hasenbusch, Pelissetto and Vicari, cond-mat/0605083.
 [2]  Kos, Poland and Simmons-Duffin,1406.4858. 
 [3] Guida and Zinn-Justin, cond-mat/9803240.
 [4] Calabrese, Pelissetto and Vicari, cond-mat/0209580.
 [5] Campostrini, Hasenbusch, Pelissetto, Rossi and Vicari, cond-mat/0110336.
 [6] M. Hasenbusch, cond-mat/0010463

n �� �S �S0 �T �T 0

2 0.51905(10) [1] 1.5118+0.0012
�0.0022 [2] 3.802(18) [3] 1.23613+0.00058

�0.00158 [2] 3.624(10) [4]
3 0.51875(25) [5] 1.5942+0.0037

�0.0047 [2] 3.794(18) [3] 1.2089+0.0013
�0.0023 [2] 3.550(14) [4]

4 0.51825(40) [6] 1.6674+0.0077
�0.0087 [2] 3.795(30) [3] 1.1864+0.0024

�0.0034 [2] 3.493(14) [4]

n �� �S �S0 �T �T 0

2 0.51905(10) [1] 1.5124(10) 3.811(10) 1.2365(16) 3.659(7)
3 0.51875(25) [5] 1.5947(35) 3.791(22) 1.2092(22) 3.571(12)
4 0.51825(40)[6] 1.668(6) 3.817(30) 1.1868(24) 3.502(16)
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Conclusions

Understanding CFTs is essential to the study of emergent phenomena, 
being end-points of RG flows where the emergent symmetry arises

Great progress has been obtained lately using the conformal bootstrap 

 It is hard to get some understanding of the results coming out from the numerical 
bootstrap, since too many operators are involved and the system is too complicated

In analogy to effective field theories in QFT, we have shown that one can “integrate 
out” higher dimensional operators and get an effective set of bootstrap equations
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Three main reasons to do that:

1) Numerics much faster  

Point 3) is perhaps the most interesting but the most complicated. 
Hopefully there is room for progress here 

2) Better understanding of the sensitivities of various 
quantities to the higher dimensional operators  

3) First step towards an analytic understanding 



Thank You
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