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GR, a beautiful but  
weird theory…

Singularities 

Critical phenomena in gravitational collapse 

Horizon thermodynamics 

Spacetime thermodynamics: Einstein equations as 
equations of state. 

The “dark ingredients” of our universe? 

Faster than light and Time travel solutions 

AdS/CFT duality, holographic behaviour 

Gravity/fluid duality

Some tantalising features of General Relativity



Gravity as an emergent phenomenon?

Emergent gravity idea: quantizing the metric or the connections does 
not help because perhaps these are not fundamental objects but 

collective variables of more fundamental structures.

 GR ⇒ Hydrodynamics 
 Metric as a collective variable 
 All the sub-Planckian physics is low energy physics 
 Spacetime as a condensate of some more fundamental objects 
 Spacetime symmetries as emergent symmetries 
 Singularities as phase transitions (big bang as geometrogenesis) 
 Cosmological constant as deviation from the real ground state

Many models are nowadays resorting to emergent gravity scenarios 

Causal sets  
Quantum graphity models 
Group field theories condensates scenarios 
AdS/CFT scenarios where the CFT is considered primary 
Gravity as an entropic force ideas 
Condensed matter analogues of gravity



Gravity as an emergent phenomenon?

Emergent gravity idea: quantizing the metric or the connections does 
not help because perhaps these are not fundamental objects but 

collective variables of more fundamental structures.

 GR ⇒ Hydrodynamics 
 Metric as a collective variable 
 All the sub-Planckian physics is low energy physics 
 Spacetime as a condensate of some more fundamental objects 
 Spacetime symmetries as emergent symmetries 
 Singularities as phase transitions (big bang as geometrogenesis) 
 Cosmological constant as deviation from the real ground state

Many models are nowadays resorting to emergent gravity scenarios 

Causal sets  
Quantum graphity models 
Group field theories condensates scenarios 
AdS/CFT scenarios where the CFT is considered primary 
Gravity as an entropic force ideas 
Condensed matter analogues of gravity



The Analogue gravity pathway 
Emergent spacetimes

And I cherish more than anything else the Analogies, my most 
trustworthy masters. They know all the secrets of Nature, and 

they ought least to be neglected in Geometry.	
Johannes	Kepler

C.Barcelo, S.L and M.Visser, 
  “Analogue gravity” 

  Living Rev.Rel.8,12 (2005-2011).
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p = pressure, η =  dynamic viscosity,  ζ =  bulk viscosity, 
Φ = potential of external driving force (gravity included)

Linearize the above Eq.s around some background
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ρ(t,x) = ρ0(t,x) + ερ1(t,x)
p(t,x) = p0(t,x) + εp1(t,x)
ψ(t,x) =ψ0(t,x) + εψ1(t,x)

Basic Assumptions
  Irrotational Flow 
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A paradigmatic example: Acoustic Gravity
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This looks messy but if we introduce the “acoustic metric”
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∂µ −ggµν∂νψ1( ) = 0

Unruh ’81, Visser ’93 
But see also White ‘73
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And combine then so to get a second order field equation

We get
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∂µ −ggµν∂νψ1( ) = 0 This is the same equation as  for a scalar field moving in curved 
spacetime, possibility to simulate FRW and Black Holes!

Unruh ’81, Visser ’93 
But see also White ‘73
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And combine then so to get a second order field equation

We get



Analogue Black holes

A	moving	fluid	will	drag	
sound	pulses	along	with	it

A	moving	fluid	will	5p	the	
“sound	cones”	as	it	moves.	
Supersonic	flow	will	5p	the	
cone	past	the	ver5cal.

A	moving	fluid	can	form	
“trapped	regions””	when	
supersonic	flow	will	5p	

the	cone	past	the	
ver5cal.

v

SISSA-Nottingham	experiment:	an	analogue	of	
superradiant	scattering	of	gravity	waves	

(PI:	S.	Weinfurtner)



A prototype quantum analogue model: BEC

A BEC is quantum system of N interacting bosons in which most of them 
lie in the same single-particle quantum state  

(T<Tc~100 nK, Natoms~105÷106) 

It is described by a many-body Hamiltonian which in the limit of dilute condensates gives a non-linear 
Schrödinger equation

This is still a very complicate system, so let’s adopt a mean field approximation

(a=s-wave scattering length) 

i� ⇥

⇥t
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Mean field approximation :  ˆ Ψ t,x( ) =ψ t,x( ) + ˆ χ t,x( )    where   ψ t,x( )
2

= nc t,x( ) = N /V

ψ t,x( ) = ˆ Ψ t,x( ) = classical wave function of the BEC ,       ˆ χ t,x( )  = excited atoms

The ground state is the vacuum for the collective excitations of the condensate (quasi-particles) but this an inequivalent 
state w.r.t. the atomic vacuum. They are linked by Bogolyubov transformations.



Bose-Einstein condensate:  
an example of analogue emergent spacetime
By direct substitution of the mean field ansatz in the non-linear Schrödinger equation gives

These are the so called Bogoliubov-de Gennes equations 
The first one encodes the BEC background dynamics 

The second one encodes the dynamics for the quantum excitations 

The equations are coupled via the so called anomalous mass m and density ñ. Which we shall neglect for the moment… 

Background dynamics

Excitations dynamics
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Let’s consider quantum perturbations over the 
BEC background and adopt the “quantum acoustic 

representation’' (Bogoliubov transformation) 

for the perturbations one gets the 
system of equations

Where D2 is a represents a second-order differential 
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Acoustic metric

For very long wavelengths the terms coming from the 
linearized quantum potential D2 can be neglected. 

The so obtained metric is again the acoustic metric 

  

€ 

gµν t,x( ) ≡ cs
λ 

− cs
2 − v0

2( )  − v0( ) j
 ⋅ 

− v0( )i  δij

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 

=
n0
csm

− cs
2 − v0

2( )  − v0( ) j
 ⋅ 

− v0( )i  δij

( 

) 

* 
* 
* 

+ 

, 

- 
- 
- 



Acoustic metric

For very long wavelengths the terms coming from the 
linearized quantum potential D2 can be neglected. 

The so obtained metric is again the acoustic metric 

Lessons 
The collective excitations (phonons) of the BEC propagate on a Lorentzian spacetime determined 

by the background velocity and density and they can be meaningfully quantised 

 The atomic physics enters only in determining the fundamental constants of the low energy phenomenology (e.g. 
speed of sound cs=analogue speed of light) 

The spacetime are stably causal as they inherit the causal structure from lab system: no-time machines possible. 

 Lorentz symmetry of the phononic theory is an low energy symmetry 

Non Local quasi-particles interactions
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Acoustic Lorentz invariance breaking 
in BEC analogue gravity

If instead of neglecting the quantum potential we adopt the eikonal approximation 
(high-momentum approximation) we find, as expected, deviations from the Lorentz 

This (Bogoliubov) dispersion relation (experimentally observed) actually interpolates between two 
different regimes depending on the value of  the fluctuations wavelength  

λ=2π/|k| with respect to  
the “acoustic Planck wavelength”  

λC=h/(2mcs)=πξ  with  ξ=healing length of  BEC=1/(8πρa)1/2

 For λ»λC one gets the standard phonon dispersion relation ω≈c|k| 
 For λ«λC one gets instead the dispersion relation for an individual gas particle (breakdown of  the 

continuous medium approximation) ω≈(ħ2k2)/(2m)

E.g. the dispersion relation for 
the BEC quasi-particles is



Robustness and Detection of Hawking 
radiation in Black hole analogues

Recent observation of a characteristic instability for compact ergo regions  
J. Steinhauer. Nature Physics (2014). Even more recently first claim of Hawking 

detection (J. Steinhauer. 2015)!  
Open debate on quantum vs classical excitations

Some facts: 
In static spacetimes Hawking radiation robustness is generally assured if there 
is a separation of scales: κBH<<Λ where Λ is parametrically related to the UV LIV 

scale. 

Tentative detection via density-density correlations

So does BH thermodynamics 
survive without Lorentz 

invariance?  

This is interesting even if you do 
not believe Lorentz invariance can 

be broken in the UV.  
Where thermodynamics comes from 

in Gravitational Theories? 
More soon…

It turned out that Hawking Radiation is robust against LIV (see e.g. Parentani and collaborators recent papers), however 
you might get (controllable) instabilities such as “black hole laser effect”  

(superluminal relation in compact supersonic region). 

Hawking Radiation detection via density-
density correlation. BEC simulation. 

Carusotto et al.

 

 

Fig. 3.  Observation of Hawking/partner pairs.  The horizon is at the origin.  The dark bands 
emanating from the horizon are the correlations between the Hawking and partner particles.  The 
solid line shows the angle of equal times from the horizon, found in Fig. 4.  The Fourier 
transform along the dashed line measures the entanglement of the Hawking pairs.  

 

Fig. 4 shows the profile of the correlation band along the dashed line of Fig. 2.  The fact that the 
profile has finite area gives information about the spectrum of the Hawking radiation.  We find 
that the Fourier transform of the profile gives 〈𝑏�𝑘𝐻𝑅𝑏�𝑘𝑃〉, where 𝑏�𝑘𝐻𝑅  is the annihilation operator 

for a Hawking particle with wavenumber 𝑘𝐻𝑅 localized outside the black hole, and 𝑏�𝑘𝑃 is the 
annihilation operator for a partner particle localized inside the black hole [11].  The relation is 
[11] 

�𝑈𝑘𝐻𝑅 + 𝑉𝑘𝐻𝑅��𝑈𝑘𝑃 + 𝑉𝑘𝑃�〈𝑏�𝑘𝐻𝑅𝑏�𝑘𝑃〉 = �𝑐out−𝑣out
𝑣in−𝑐in

+ 𝑣in−𝑐in
𝑐out−𝑣out

 FT�𝐺(2)(𝑥, 𝑥′)�  (1) 

where 𝑈𝑖 and  𝑉𝑖 are the Bogoliubov coefficients for the phonon quasiparticles, which are 
completely determined by 𝜉𝑖𝑘𝑖.  the Fourier transform is of Fig. 4 where 𝑥 is in units of 𝜉, giving 
a function of 𝑘 in units of 𝜉−1.  Here, we have neglected the phonons which occur due to the 
finite temperature of the condensate.  These phonons are negligible in our system [10].  
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The Analogue gravity pathway 
From emergent spacetimes to  

emergent gravity



Emergent gravity scenarios

“Spacetime	Atoms”+QM Manifold,	Metric,	LLI,	Diffeo	
Gravity+SM,	Locality

“Spacetime	Atoms”	in	
flat	spacetime	+QM

LLI,	Diffeo,		
Gravity+Matter

Differentiable	Manifold,		
Fields,	Locality,	Lorentz	breaking	

or	non-locality

One	step	emergence

From	Manifold	to	Gravity	with	Lorentz	breaking	or	non-locality

Can	we	emerge	a	relativistic	theory	for	Spin	2?		
Obstruction:	the	Weinberg-Witten	theorem

Phase	transition	or	Sum	over	
microscopic	configurations

Low	energies

While	the	first	“extreme	emergence”	route	might	seem	the	more	fundamental	it	is	also	the	hardest.	

Let’s	see	how	far	we	can	go	with	the	Analogue	Gravity	framework…	

“No	spin	2	particle	can	be	emergent	if	you	have	Lorentz	invariance		and		
local	Gauge	invariant	currents	or	conserved	SET”	

Hence	potential	ways	out	are:

No mesoscopic physics  
on a Spacetime

Induced	gravity	a	la	Sakarov

“Spacetime	Atoms”	+QM
LLI,	Diffeo,		

Gravity+Matter,	Locality	
a	la	Induced	Gravity

Differentiable	Manifold,		
Fields	+	Lorentz+	Metric	but	no	

geometrodynamics
?



A toy model for emergent gravity: non-relativistic BEC

So	let’s	go	back	to	the	mean	field	approximation	of	BEC	and	focus	
on	the	equation	for	the	background:

	Can	this	be	encoding	some	form	of	gravitational	dynamics?	

	If	yes	it	must	be	some	form	of	Newtonian	gravity	(non	relativistic	equation)	
	But,	in	order	to	have	any	chance	to	see	this,	we	need	to	have	some	massive	field

One	way	to	get	this	is	to	introduce	a	soft	U(1)	breaking	term		
(i.e.	pass	from	massless	Goldstone	bosons	top	massive	pseudo-Goldstone	bosons)

It	can	be	checked	that	the	extra	term	gives	massive	phonons	
which	at	low	momenta	propagate	on	the	standard	acoustic	

geometry	of	BEC

We	assume	–μ<λ<<μ	(soft	breaking).
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Note: this kind of  symm breaking is actually experimentally realized in magnon (quantized spin wave)  
BEC in 3He-B (see e.g. related work by G.Volovik)

F.	Girelli,	S.L.,L.Sindoni	
Phys.Rev.D78:084013,2008

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%2522Girelli,%2520Florian%2522
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%2522Liberati,%2520Stefano%2522
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%2522Sindoni,%2520Lorenzo%2522


Non-relativistic BEC gravitational potential

Results	

1. It	is	possible	to	show	by	looking	at	the	Newtonian	limit	of	the	acoustic	geometry	
that	the	gravitational	potential	is	encoded	in	density	perturbations	

2. 	By	adopting	the	ansatz	

and	looking	at	the	Hamiltonian	for	the	quasi-particles	in	the	non	relativistic	
limit,	one	can	actually	show	that	the	analogue	of	the	gravitational	potential	is

So	we	would	now	like	to	cast	the	equation	for	the	a	stationary,	homogeneous,	condensate	background	in	a	
Poisson-like	form	with	the	quasi-particles	moving	accordingly	to	the	analogue	gravitational	potential.

where		L=>	range	of	the	gravitational	interaction,	GN	=>	analogue	G	Newton,		
Λ	=>	analogue	cosmological	constant

⇤F = ⇤a = �M⇤⇥⇥grav�
⇥2 � 1

L2

⇥
⇥grav = 4�GN⇥ + �

⇤ =
�
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�

⇥1/2

(1 + u(x))

�grav(x) =
(µ + 4�)(µ + 2�)

2�m
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Results	

1. It	is	possible	to	show	by	looking	at	the	Newtonian	limit	of	the	acoustic	geometry	
that	the	gravitational	potential	is	encoded	in	density	perturbations	
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So	we	would	now	like	to	cast	the	equation	for	the	a	stationary,	homogeneous,	condensate	background	in	a	
Poisson-like	form	with	the	quasi-particles	moving	accordingly	to	the	analogue	gravitational	potential.

where		L=>	range	of	the	gravitational	interaction,	GN	=>	analogue	G	Newton,		
Λ	=>	analogue	cosmological	constant

This	is	the	form	the	gravitational	potential	affecting	the	quasi-particle	motion	for	a	slightly	
inhomogeneous	BEC.		

We	now	want	to	see	if	it	satisfies	some	modified	Poisson	equation…
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Now,	knowing	what	is	the	analogue	gravitational	potential,	this	can	be	cast	in	the	
form	of	a	generalized	Poisson	equation	with	a	(negative)	cosmological	constant.	

Let’s	consider	the	equation	for	a	static	background	with	a	source	term.	
The	latter	is	given	partly	by	a	localized	quasi-particle	plus	a	vacuum	contribution	due	to	the	unavoidable	presence/
backreaction	of	excited	atoms	above	the	condensate�

�2

2m
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where n̄(x) = ñ(x)� ñ0, m̄(x) = m̃(x)� m̃0

and ñ0 = ⇥0|⇤̂†(x)⇤̂(x)|0⇤, m̃0 = ⇥0|⇤̂(x)⇤̂(x)|0⇤
are the quasi-particle vacuum backreaction terms
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The	cosmological	constant	scale	is	suppressed	by	a	small	number		
(the	dilution	factor	ρa3<<1)	w.r.t.	the	analogue/emergent	Planck	scale!	

The	cosmological	constant	is	not	the	phonons	ground	state	energy,		
neither	it	is	the	atoms	grand	canonical	energy	density	h,		or	energy	density	ε=h+μρ	

It	is	just	related	to	the	subdominat	second	order	correction	to	these	latter	quantities	due	to	quantum	depletion	(the	
part	related	to	the	excitations)	and	its	scale	is	the	healing	scale.	

where
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where F" ¼ ð2F" þ 3F!!Þ=5 (see Fig. 1, solid line).
Let us now compare the value of " either with the

ground-state grand-canonical energy density h [Eq. (11)],
which in [9] was suggested as the correct vacuum energy
corresponding to the cosmological constant, or with the
ground-state energy density % of Eq. (14). Evidently, "
does not correspond to either of them: even when taking
into account the correct behavior at small scales, the vac-
uum energy computed with the phonon EFT does not lead
to the correct value of the cosmological constant appearing

in Eq. (17). Noticeably, since" is proportional to
ffiffiffiffiffiffiffiffiffiffi
"0a

3
p

, it
can even be arbitrarily smaller both than h and than %, if the
condensate is very dilute. Furthermore, " is proportional
only to the subdominant second order correction of h or %,
which is strictly related to the depletion [see Eq. (12)].

Fundamental scales.—Several scales show up in this
system, in addition to the naive Planck scale computed
by combining @ and the emergent constants GN and cs:
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ffiffiffiffiffiffiffiffi@c5s
GN

s
/
"
$

g"0

#$3=4
ð"0a
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For instance, the Lorentz-violation scale LLV ¼ & /
ð"0a

3Þ$1=2a differs from LP, suggesting that the breaking
of the Lorentz symmetry might be expected at scale much
longer than the Planck length (energy much smaller than
the Planck energy), since the ratio LLV=LP / ð"0a

3Þ$1=4

increases with the diluteness of the condensate.
Note that LLV scales with "0a

3 exactly as the range of
the gravitational force [see Eq. (18)], signaling that this
model is too simple to correctly grasp all the desired
features. However, in more complicated systems [13],
this pathology can be cured, in the presence of suitable
symmetries, leading to long range potentials.

It is instructive to compare the energy density corre-
sponding to " to the Planck energy density:
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The energy density associated with the analogue cosmo-
logical constant is much smaller than the values computed
from zero-point-energy calculations with a cutoff at the
Planck scale. Indeed, the ratio between these two quantities
is controlled by the diluteness parameter "0a

3.
Final remarks.—Taken at face value, this relatively

simple model displays too many crucial differences with
any realistic theory of gravity to provide conclusive

evidences. However, it displays an alternative path to the
cosmological constant, from the perspective of a micro-
scopic model. The analogue cosmological constant that we
have discussed cannot be computed as the total zero-point
energy of the condensed matter system, even when taking
into account the natural cutoff coming from the knowledge
of the microphysics [9]. In fact the value of " is related
only to the (subleading) part of the zero-point energy
proportional to the quantum depletion of the condensate.
This holds also in a spinor BEC model, since the reasoning
there is absolutely identical. The virtue of the single BEC
model is to display the key physical result without obscur-
ing it with unnecessary mathematical complications, with-
out loss of generality. Interestingly, this result finds some
support from arguments within loop quantum gravity mod-
els [18], suggesting a BCS energy gap as a (conceptually
rather different) origin for the cosmological constant.
The implications for gravity are twofold. First, there

could be no a priori reason why the cosmological constant
should be computed as the zero-point energy of the system.
More properly, its computation must inevitably pass
through the derivation of Einstein equations emerging
from the underlying microscopic system. Second, the en-
ergy scale of " can be several orders of magnitude smaller
than all the other energy scales for the presence of a very
small number, nonperturbative in origin, which cannot be
computed within the framework of an EFT dealing only
with the emergent degrees of freedom (i.e., semiclassical
gravity).
The model discussed in this Letter shows all this explic-

itly: the energy scale of" is here lowered by the diluteness
parameter of the condensate. Furthermore, our analysis
strongly supports a picture where gravity is a collective
phenomenon in a pregeometric theory. In fact, the cosmo-
logical constant puzzle is elegantly solved in those scenar-
ios. From an emergent gravity approach, the low energy
effective action (and its renormalization group flow) is
computed within a framework that has nothing to do with
quantum field theories in curved spacetime. Indeed, if we
interpreted the cosmological constant as a coupling con-
stant controlling some self-interaction of the gravitational
field, rather than as a vacuum energy, it would immediately
follow that the explanation of its value (and of its proper-
ties under renormalization) would naturally sit outside the
domain of semiclassical gravity.
For instance, in a group field theory scenario (a general-

ization to higher dimensions of matrix models for two
dimensional quantum gravity [19]), it is transparent that
the origin of the gravitational coupling constants has noth-
ing to do with ideas like ‘‘vacuum energy’’ or statements
like ‘‘energy gravitates’’, because energy itself is an emer-
gent concept. Rather, the value of " is determined by the
microphysics, and, most importantly, by the procedure to
approach the continuum semiclassical limit. In this respect,
it is conceivable that the very notion of cosmological
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ergy scale of " can be several orders of magnitude smaller
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More properly, its computation must inevitably pass
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from the underlying microscopic system. Second, the en-
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with the emergent degrees of freedom (i.e., semiclassical
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Relativistic BEC and emergent LLI
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The associated dispersion relation has a gapped and gapless mode 

The gapless/massless mode is the interesting one as it admits an effective metric in the phononic 
regime 

In the limit of very relativistic atoms b ⌘ mcc0

µ
� 1

Bose–Einstein condensation, may 
occur also for relativistic bosons. 
So far only theoretical model. 

Long wavelengths limit k ⌧ 2mc0

~ =) ⇤2
� = c2

sk
2

with gµ� = ⇥
c

cs


�µ� +

✓
1� c2

s

c2

◆
vµv�

c2

�

c2
s = c2b/(1 + b)

Short wavelengths limit k � 2mc0

~ =) ⇤2
� = c2k2

with gµ� = �µ�

Intermediate ⇤2
� = c2

s

"
k2

+

k4

4b
� µ

~c

�2
(1 + b)2

#

LLI+Gravity 

SR 

No LLI+Raibow metric/Finsler ? 

S.Fagnocchi, S. Finazzi, SL, M. Kormos, A. Trombettoni: New. J. Phys. 

Of course the BEC model is not Lorentz invariant at all scales as it is fundamentally non 
relativistic. 

But even breaking Lorentz invariance can be done in different ways

Lesson from rBEC: one can have IR and UV relativistic physics but nonetheless 
Lorentz violation at intermediate scales.  

You have to understand the classical/continuous limit to be sure about LI.



Emergent gravity in relativistic BEC

From the form of the e↵ective potential it is clear that at a given � if µ > m then the system

is in the broken U(1) phase and the condensate has formed. It can be shown [23] that this

phase transition is second order and the critical temperature is given by
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Later we shall be interested in the massless limit for which the critical temperature is given

by T

c

= 3µ2
/�. Thus, in the massless case, a non-zero chemical potential is necessary in
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III. RELATIVISTIC BEC AS AN ANALOGUE GRAVITY MODEL

A. Dynamics of the condensate: Gross–Pitævskii equation
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The equation of motion for � is obtained by variation with respect to �⇤ and we get,
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We can factor out explicitly the dependence on the chemical potential and write the field as

� = 'e

iµt

. (13)

This gets rid of the µ dependent terms and we get
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2
�

'� 2�|'|2' = 0. (14)

Let us now decompose ' as ' = '0(1 +  ), where '0 is the condensed part of the field

(h'i = '0), which we take to be real, and  is the fractional fluctuation. Reality of '0

amounts to considering the condensate at rest. Note that  is complex and h i = 0. It

can be written in terms of its real and imaginary parts  =  1 + i 2. Substituting this
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Let us again decompose φ as φ = φ0(1 + ψ), where φ0 is the condensed part of the field 
(⟨φ⟩ = φ0) and ψ is the fractional fluctuation which can be written in terms of its real 

and imaginary parts ψ = ψ1 + iψ2

gμν =φ2
0ημν

Crucial point: in some suitable regime (neutral background field, cs=c) you can 
completely mask the lorentz breaking. In this regime one finds

decomposition in eq. (14) and taking the expectation value we get the equation of motion

for the condensate
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3 h 2
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⇤

= 0, (15)

where we have assumed that the cross-correlation of the fluctuations vanish, i.e., h 1 2i = 0.

This is justified a posteriori by equations (19), which show that  1 and  2 do not interact

with each other at the order of approximation we are working. Eq. (15) determines the

dynamics of the condensate taking into account the backreaction of the fluctuations. It is

the relativistic generalisation of the Gross–Pitævskii equation [27].

B. Dynamics of perturbations: acoustic metric

Having determined the dynamics of the condensate we now want to calculate the equa-

tions of motion for the perturbations themselves.

To this end, we insert ' = '0(1 +  1 + i 2) in eq. (14) and expand it to linear order in

 ’s. Using the Gross–Pitævskii equation to that order and separating the real and imaginary

parts we get the equation of motion for  1 and  2,
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We therefore see that  2 is the massless mode, which is the Goldstone boson of the broken

U(1) symmetry, while  1 is the massive mode with mass 2'0

p
�. We now define a “acoustic”

metric, which is conformal to the background Minkowski,
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The relation between the d’Alembertian operators for g
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is given by,
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Equations (16) can be written in terms of the d’Alembertian of g
µ⌫

as

⇤
g

 1 � 4� 1 = 0, (19a)

⇤
g

 2 = 0. (19b)
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to relativity groups with two limit speeds (c
s

in the IR limit, c in the UV one) and the

relativity group remain always the same at any energy. This is hence an example of a

discrete model of emergent space-time where the low and high energy regime share the same

Lorentz invariance. This point is not trivial since, as far as we know, there is no toy model of

emergent spacetime in which Lorentz violation is screened in this way at the lowest order of

perturbation theory. Our case show that this can be possible at the price of some non-trivial

conditions on the background system.

V. EMERGENT GENERAL COVARIANCE

In the last section we saw that the fluctuations of the condensate, also called the quasi-

particle excitations, are oblivious of the flat background metric. They instead experience a

curved geometry dictated by the condensate and the background. On the other hand, they

back-react on the condensate through the relativistic generalization of the Gross-Pitaevskii

equation (15). It is natural to ask if it is possible to have a geometric description of the

dynamics of the condensate too?

The Ricci tensor of the acoustic metric (17) is calculated to be

R

g

= �6
⇤'0

'

3
0

(21)

Dividing the relativistic Gross-Pitaevskii equation by '3
0, eq. (15) can be written as

R

g

� m

2

�

2
+ ⇤ = hTqpi, (22)

where ⇤ := 12� is the “cosmological constant” and we have defined hTqpi := �12� [ 3 h 2
1i+ h 2

2i ],
the “qp” subscript here stands for “quasiparticle” as this quantity is clearly dependent on

the presence of the excitation of our condensate.

This equation is clearly reminiscent of the Einstein–Fokker equation describing Nordström

gravity [29, 30].

R + ⇤ = 24⇡GN T, (23)

where R and T are respectively the Ricci scalar and the trace of the stress energy tensor

of matter. Unfortunately, the gravitational analogy of our equation is spoiled by the mass

term. Also we shall need to show that the above defined Tqp is indeed the trace of the SET of
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For m->0	(allowed	by	non	zero	chemical	
potential	μ) Equivalent to Einstein-

Fokker equation of Nordström gravity! 
(but not truly background 

independent)

where the subscript numbers in the Lagrangians represent the number of the perturbation

fields in each of their terms. Having done tis splitting one can show how to rewrite the

action in a geometric form, i.e. asa function of the conformal metric g

µ

⌫ = '

2
0⌘µ⌫.

The final result is derived in Eq. (??) and, using the redefined fields with appropriate

dimensions, is given by

S = S0 + S1 + S2 + · · · = c
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Let us now define the analogue gravitational stress-energy tensor for the perturbation

fields as

T

µ⌫

⌘ � 1p�g

� (
p�gL2)

�g

µ⌫

, (27)

where we will take into account only the quadratic part of the action in the perturbations,

since the linear one it can be show to give no contribution using the background and pertur-

bation’s equations. The calculation is explicitly shown in Appendix C, here we report the

final result for the Gibbs average of the trace of the above defined stress tensor

hT i = �⇤

6

⇥

3h 2
1i+ h 2

2i
⇤

= �2�
⇥

3h 2
1i+ h 2

2i
⇤

= 6hT
qp

i. (28)

Given this last expression one sees that the RHS of eq. (25) is given by 6G
c

3 hT i and hence

our emergent Nordström gravity equation will be exactly of the form (23) if one defines

G

eft
N = G/4⇡ = ~c5/(4⇡µ2). This corresponds to an emergent analogue Planck scale MPl =

µ

p
4⇡/c2.

B. Cosmological Constant

A dedicated discussion is deserved by the cosmological constant term that arise in this

model due to the ��4 type of interaction. First of all is worth notice that other interaction

terms, polynomial in the field, will not give in general contributions such that one can identify

an acoustic conformally flat metric as in our case. Reinstating dimensional quantities the

value of the would-be cosmological constant in the model is

⇤ ⌘ 12�
µ

2

c

2~ = 12�
M

2
Pc

2

4⇡~ . (29)
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So the cosmological constant appear to be proportional to the Plank mass squared. It is

anyway true that in the definition of the cosmological constant appears also the coupling

constant � that can be chosen to be small, meaning that we are looking at a weakly inter-

acting system. This can maybe give us the separation of scales that one could wish to find

and that was found in [20] due, in that case, to matter vacuum polarization e↵ects.

In our case the matter vacuum fluctuations contribution to the cosmological constant will

be given by
G

c

3
⇤
⇥

3h 2
1i+ h 2

2i
⇤

, (30)

so that the full cosmological constant will be

⇤
R

⌘ ⇤

✓

1 +
4⇡~
c

2
M

2
Pl

⇥

3h 2
1i+ h 2

2i
⇤

◆

. (31)

Note that the contribution of the vacuum fluctuations appears to be positive and not negative

as one could wish in order to diminish the “bare” cosmological constant.

Nonetheless, as in [20], is worth to analyse the ratio between the energy density associated

to the bare cosmological constant and the Planck energy density of this model. The former

is given by

✏⇤ /
✓

⇤c4

G

N

◆

and the latter by

✏

P

/ c

7

~G2
N

.

Then the ratio is given by
✏⇤

✏

P

' �~2c2
µ

2
(32)

From this last expression is clear that this ratio is pretty small since it is suppressed by the

small ratio �~2/µ2.

VI. SUMMARY AND OUTLOOK

In this paper we have studied the relativistic Bose-Einstein condensation in a massless

complex scalar field theory with a quartic coupling. Below the critical temperature the U(1)

symmetry is broken and the charge resides in the non-zero value of the expectation value

of the field– the condensate. We showed that the dynamics of the condensate is described

by the relativistic generalization of the Gross-Pitaevskii equation given in eq. (15). The

12

Belenchia,	SL,	Mohd:	arXiv:1407.7896	
Phys.Rev.	D90	(2014)	10,	104015

The “bare” Λ is in this case small and positive but it will generically receives a (negative) 
correction from the fraction of atoms in the non-condensate phase, the depletion factor. 

small

Nordström gravity (1913) is the only other theory in 3+1 dimensions which satisfies the Strong 
Equivalence principle. However, it is not truly background independent  

(fixed Minkowski causal structure)

http://arxiv.org/abs/arXiv:1407.7896


What next?
This is all interesting but is clearly  open to several criticisms:

1. In the non-relativistic BEC you get only Newtonian gravity
+Lorentz breaking 

2. In the relativistic case, fine tuning of the system gives you 
Nordstrom gravity which is remarkable but it is still “just” 

scalar gravity+it is not really background independent 
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gravitational theories with universal coupling to energy are characterized by 
Hamiltonians that are pure boundary terms on shell. In order for this to be the low 

energy effective description of a field theory with local kinematics, all bulk dynamics 
must be frozen and thus irrelevant to the construction.  

The result applies to theories defined either on a lattice or in the continuum, and 
requires neither Lorentz-invariance nor translation-invariance.
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must be frozen and thus irrelevant to the construction.  

The result applies to theories defined either on a lattice or in the continuum, and 
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Emergence of Gravity a la Analogue Model+ background 
independence requires kinematical non-locality  

(different microcausality) to start with…



Ok, but can we test some of these ideas?



From Analogue Models to Phenomenology 
(bite the bullet)



QG phenomenology a la carte

Broken or deformed Symmetries 
• Lorentz 
• Translations 
• SUSY (LHC searches but well below QG scale) 
• Diffeomorphism (strong bounds from pulsar timing 

Donoghue et al. PhysRevD.81.084059)

Dimensions 
• Extra dimensions (still missing obs. 

evidence so far) 
• Dimensional reduction in QG (early 

universe?)

Locality 
• QG induced non-locality 
• Uncertainty Principle->GUP (no strong 

constraints) 
• Non-commutative geometries

QG Modified 
gravitational dynamics 

• E.g. Bouncing Universes 
• Regular Black holes, Fuzballs

ex pluribus quattuor
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• Regular Black holes, Fuzballs

ex pluribus quattuor



QG phenomenology a la carte

Broken or deformed Symmetries 
• Lorentz 
• Translations 
• SUSY (LHC searches but well below QG scale) 
• Diffeomorphism (strong bounds from pulsar timing 

Donoghue et al. PhysRevD.81.084059)

Dimensions 
• Extra dimensions (still missing obs. 

evidence so far) 
• Dimensional reduction in QG (early 

universe?)

Locality 
• QG induced non-locality 
• Uncertainty Principle->GUP (no strong 

constraints) 
• Non-commutative geometries

QG Modified 
gravitational dynamics 

• E.g. Bouncing Universes 
• Regular Black holes, Fuzballs

Let’s start with 
the PULP stuff..

ex pluribus quattuor



Lorentz violation: a possible first glimpse of QG?
Suggestions for Lorentz violation searches (at low or high energies) were not inspired only 

by Analogue models of emergent gravity.  
They came also from several QG models

 String theory tensor VEVs (Kostelecky-Samuel 1989, ...) 
 Cosmological varying moduli (Damour-Polyakov 1994) 

 Spacetime foam scenarios (Ellis, Mavromatos, Nanopoulos 1992, Amelino-Camelia et al. 1997-1998) 
 Some semiclassical spin-network calculations in Loop QG (Gambini-Pullin  1999) 

 Einstein-Aether Gravity (Gasperini 1987, Jacobson-Mattingly 2000, …) 
 Some non-commutative geometry calculations (Carroll et al. 2001) 

 Some brane-world backgrounds (Burgess et al. 2002)  
 Ghost condensate in EFT (Cheng, Luty, Mukohyama, Thaler 2006) 

 Horava-Lifshiftz Gravity (Horava 2009, …)

Lorentz invariance is rooted via Einstein equivalence principle in GR and it is a 
fundamental pillar of the SM. The more fundamental is an ingredient of your theory the 

more needs to be tested observationally! 

You do not need Planck scale observations to constraint Planck suppressed Lorentz 
violations. 

In any quantum/Discrete gravity model it is a non-trivial task to recover exact Local 
Lorentz Invariance and/or background independence. Hence it is very important to 

understand what is needed in order to conciliate LLI and forms of hard or quantum 
discreteness at the Planck scale.

Quote: “How you dare to Violate Lorenz Invariance?”
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Breaking of  
Local Lorentz Invariance

 Principle of relativity ➔ group structure 
 Homogeneity ➔ linearity of the 

transformations 
 Isotropy ➔ rotational invariance and 

Riemannian structure 
 Precausality ➔ observer independence of co-

local time ordering

Lorentz transformations with 
unfixed limit speed C 

C=∞ ➔ Galileo 
C=clight ➔ Lorentz 

Experiments determine C!

W. von Ignatowsky 
(Tiblisi 1875-Leningrad 1942) 

von Ignatowsky theorem (1911): Axiomatic Special Relativity
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Break Precausality ➔ Hell breaks loose, better not! 

Break Principle of relativity ➔ Preferred frame effects     

 Break Isotropy ➔ Finsler geometries. E.g. Very Special Relativity 
(Glashow, Gibbons et al.). 

Break Homogeneity ➔ no more linear transformations ➔ No Locally 
Euclidean Space. ➔ tantamount to give up operative meaning of 

coordinates

Lorentz breaking does not necessarily mean to have a preferred frame!
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(Tiblisi 1875-Leningrad 1942) 

von Ignatowsky theorem (1911): Axiomatic Special Relativity

Break Precausality ➔ Hell breaks loose, better not! 

Break Principle of relativity ➔ Preferred frame effects     

 Break Isotropy ➔ Finsler geometries. E.g. Very Special Relativity 
(Glashow, Gibbons et al.). 

Break Homogeneity ➔ no more linear transformations ➔ No Locally 
Euclidean Space. ➔ tantamount to give up operative meaning of 

coordinates

Lorentz breaking does not necessarily mean to have a preferred frame!

Let’s relax the Relativity Principle first and study the phenomenology.  
To do this we need a framework…



Dynamical frameworks for LIV

Frameworks for preferred frame effects

E.g. QED, rot. Inv. dim 3,4 operators E.g. QED, dim 5 operators

(Colladay-Kosteleky 1998, Colemann-Glashow 1998) (Myers-Pospelov 2003)

EFT+LV
Non EFT proposals:  

Spacetime foam models 
DSR/Relative Locality

local EFT with LIV 
Non-renormalizable ops,  

CPT ever or odd 
(no anisotropic scaling),  

(UV LIV – QG inspired LIV)
Minimal Standard Model Extension 

Renormalizable ops.  
(IR LIV - LI SSB)

See e.g. Amelino-Camelia. Living Reviews of Relativity 

See e.g. SL. CQG Topic Review (2013) 

NOTE: CPT violation implies Lorentz violation but LV does not 
imply CPT violation in local EFT.  

“Anti-CPT” theorem (Greenberg 2002 ).  
So one can catalogue LIV by behaviour under CPT



Constraints on QED dim 5 
CPT Odd QED extension

The Crab nebula a supernova remnant (1054 A.D.) distance ~1.9 kpc from Earth. 
Spectrum (and other SNR) well explained by synchrotron self-Compton (SSC) 

Electrons are accelerated to very high energies at pulsar: in LI QED γe≈109÷1010 
High energy electrons emit synchrotron radiation 

Synchrotron photons undergo inverse Compton with the high energy electrons
Synchrotron Inverse Compton

Jacobson, SL, Mattingly: Nature (2003) 
L.Maccione, SL, A.Celotti and J.G.Kirk:  JCAP 0710 013 (2007) 

L.Maccione, SL, A.Celotti and J.G.Kirk, P. Ubertini:Phys.Rev.D78:103003 (2008)
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EFT with Lorentz breaking Ops. 
Matter Sector Constraints

SL, CQG Topic Review 2013

 Penning traps 
 Clock comparison experiments 

 Cavity experiments 
 Spin polarised torsion balance  

 Neutral mesons  
 Slow atoms recoils

Terrestrial tests: Astrophysical tests: 

 Cosmological variation of  couplings, CMB  
 Cumulative effects in astrophysics 

 Anomalous threshold reactions   
 Shift of  standard thresholds reactions with new 

threshold phenomenology  
 LV induced decays not characterised by a threshold 

 Reactions affected by “speeds limits”
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Caveat: A potential problem with  
the UHECR data?

With increased statistics the composition of UHECR beyond 1019 eV seems more and 
more dominated by iron ions rather than protons at AUGER. But Telescope Array (TA) in 

Utah is instead Ok with purely proton composition. Confusion. 

With improved statistic the correlated AUGER UHECR-AGN events have decreased 
from 70% to 40%: large deflections? i.e. heavy (high Z) ions? 

Also no evidence at the TA for AGN correlation. But some hint of correlation with LLS 
for E>57 EeV 

Ions do photodisintegration rather than the GZK reaction, this may generate much less 
protons which are able to create pions via GZK and hence UHE photons.

Have we really seen the GZK cutoff or sources exhaustion? See e.g. arXiv:1408.5213.  

If not all the constraints on dim 6 CPT even operators would not be robust…  

Furthermore puzzling cut off above 2 PeV in UHE neutrinos at IceCube maybe 
consistent with p4 LIV at MLIV~1015 GeV. F.W. Stecker, S.T. Scully, SL, D. Mattingly. JCAP 2015



More bad news?  
The flies in the Ointment…

• Naturalness problem 

• Possible breakdown of black hole thermodynamics 

Lorentz breaking theories suffers two main 
theoretical problems



The “un-naturalness” of small LV in EFT
[Collins et al. PRL93 (2004), Lifshitz theories (anisotropic scaling): Iengo, Russo, Serone (2009)] 

Gambini, Rastgoo, Pullin Class.Quant.Grav. 28 (2011) 155005 . Polcinski (2011)

Dim>4 
LiV 

Operators

No new 
physics up to 

ELIV

Radiative 
Corrections

Unsuppressed 
corrections to 

dim 4 operators 
(low energy 

propagators)

Given the strong constraints on dim 3,4 LIV operators (low energy effects)  
this is BAD

Note: some interesting exceptions apply.  
See Belenchia, SL, Gambassi: JHEP 2016
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Improved RG flow at HE
Models with strong coupling at high energies 
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Violations of the Generalised Second 
Law in Lorentz breaking scenarios

Note: split in horizons can be used also to generate classical violation of GSL (region between radii is like ergoregion 
for B field: possible energy extraction) 

Conclusion: Violation of LLI seems to lead to violation of the Generalized Second Law (GSL). 

S.L.Dubovsky, S.M.Sibiryakov, Phys. Lett. B 638 (2006) 509. 
C. Eling, B. Z. Foster, T. Jacobson and A. C. Wall, “Lorentz violation and perpetual motion”, Phys. Rev. D 75 (2007) 101502. 

T. Jacobson and A. C. Wall, “Black hole thermodynamics and Lorentz symmetry”,  Found. Phys. 40 (2010) 1076.

cB > cA RB < RA TB,Haw > TA,Haw

RB

RA

A and B fields interacts only gravitationally

Surround the BH with two shells of A and B fields 
It is possible to choose the temperatures of the shells such that

TB,Haw >TB,shell>TA,shell>TA,Haw

Then TA,shell>TA,Haw  implies flux from Shell A to BH 
But TB,Haw >TB,shell  implies flux from BH to shell B 

One can choose the temperatures of the shells in such a way that the two energy fluxes 
compensate each other.  

So BH mass, radius, entropy stay constant. 
But TB,shell>TA,shell hence the net effect is to bring heat from cooler shell to hotter one!A,shell

B,shell
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cB > cA RB < RA TB,Haw > TA,Haw

RB

RA

A and B fields interacts only gravitationally

Surround the BH with two shells of A and B fields 
It is possible to choose the temperatures of the shells such that

TB,Haw >TB,shell>TA,shell>TA,Haw

Then TA,shell>TA,Haw  implies flux from Shell A to BH 
But TB,Haw >TB,shell  implies flux from BH to shell B 

One can choose the temperatures of the shells in such a way that the two energy fluxes 
compensate each other.  

So BH mass, radius, entropy stay constant. 
But TB,shell>TA,shell hence the net effect is to bring heat from cooler shell to hotter one!A,shell

B,shell

However all of this was not taking into account 
LIV in gravity and UV completion…



Gravity VS Local Lorentz invariance 
(what does not kill you makes you stronger)



Lorentz breaking gravity
Rotationally invariant Lorentz violation in the gravity sector via a vector field. 
Take the most general theory for a unit timelike vector field coupled to gravity 

which is second order in derivatives.

Einstein-Aether 
(Jacobson-Mattingly 2000)

λ=1, ξ=1, η=0 in General Relativity (GR).  
IR limit L2 is Einstein-Aether with hypersurface orthogonal aether field.  

Observationally constrained but not ruled out arXiv:1311.7144 [gr-] Yagi et al

The condition M*<1016 GeV  
is a consequence of  the need to protect perturbative renormalizability w.r.t. the mass scale of  the Horava scalar mode

Blas,Pujolas,Sibiryakov,  
Phys. Lett. B 688, 350 (2010).

Horava-Lifshitz 
(Horava 2009)



A new hope?  Universal horizons
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FIG. 1: Conformal diagram of black hole with Universal horizon, showing lines of constant
khronon field, with the Universal horizon shown in red.

extensively throughout this paper, we will briefly summarize some of the relevant details of
the solutions. For more information and background we refer the reader to Ref. [12]. Both
solutions, in Eddington–Finkelstein coordinates, can be written as

ds2 = �e(r) dv2 + 2dv dr + r

2 d⌦2

. (6)

Here the form of the æther is

u

a = {↵(r), �(r), 0, 0} ; ua = {�(r)� e(r)↵(r),↵(r), 0, 0} . (7)

Note from the normalization condition, u2 = �1, there is a relation between ↵(r) and �(r):

�(r) =
e(r)↵(r)2 � 1

2↵(r)
. (8)

We can also define a spacelike vector sa, such that

s

a
ua = 0; s

2 = 1. (9)

Explicitly

s

a = {↵(r), e(r)↵(r)� �(r), 0, 0} =

⇢
↵(r),

e(r)↵(r)2 + 1

2↵(r)
, 0, 0

�
, (10)

which clearly ensures s2 = 1. The two known exact black-hole solutions to Einstein–Æther
theory correspond to the special combinations of coe�cients c

123

= 0 and c

14

= 0.

• Solution 1: c
123

= 0.
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Bh, spherically symmetric solution are the same in AE and Horava gravity. 
The aether is hypersurface orthogonal and there is a compact constant Kronon hypersurface from 

which even infinite velocity signals cannot escape. 

Alternatively the UH occurs when the Killing field χ associated to energy at infinity becomes 
orthogonal to the aether field: (χu)=0. 

(note: Open issue with stability) 

Eternal: D. Blas and S. Sibiryakov (2011), E. Barausse, T. Jacobson, T. P. Sotiriou (2011)  
and Collapse solutions: M.Saravani, N. Afshordi, Robert B. Mann., (2014). 

Analogue model of  AE-BH with UH:   B.Cropp, S.L and R. Turcati, arXiv:1606.01044 [gr-qc].

Cropp, SL, Mohd, Visser. 
Phys.Rev. D89 (2014) no.6, 064061 



Universal Horizon Thermodynamics?

Does the UH radiate? Berglund, Bhattacharyya, Mattingly, Phys.Rev.Lett. 110 (2013) 7, 071301

Tunneling method a la Parikh—Wilczekc leads to predict a thermal spectrum with temperature

TUH =
UH

4⇡cæNotes
1.  The calculation assumes vacuum at UH for infalling observers (like Unruh for UH) 
2. The above temperature obtained is not κUH/2π but it is instead k(peeilng)UH/2π. 
3.F. Michel and R.Parentani, Phys. Rev. D91, no. 12, 124049 (2015) get from shell collapse 

different vacuum state (Unruh for KH) and find radiation at KH temperature.

from this and 1st law SUH =
(1� c13)cæAUH

2Gæ

UH thermodynamics Laws

Gist Status Math

oth surface gravity is 
constant on UH

✔ 
(but trivial in 

spherically symm. sols)

1st Energy conservation ✔

2nd Non decreasing 
entropy

✔? (GSL?)

3rd Unattainability of 
T=0 state ? ?

�µrµ|UH = 0

�Mæ =
qUH�AUH

8⇡Gæ

qUH = (1� c13)UH +
c123
2

KUH|�|UH

c13 = c1 + c3 c123 = c1 + c2 + c3

UH =
p

�rµ�⌫rµ�⌫

KUH = rµu
µ

�AUH � 0

Berglund, Bhattacharyya, Mattingly  
Phys.Rev. D85 (2012) 124019 

Arif Mohd. e-Print: arXiv:1309.0907
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Lorentz regained:  
Searching Non-locality



Non-locality as an alternative to 
symmetry breaking?

What about other mesoscopic physics without Lorentz violation? 

We do have concrete QG models of emergent gravity like Causal Sets or String Field Theory or Loop 
Quantum Gravity which generically seem to predict exact Lorentz invariance below the Planck scale 

in spite of (fundamental or quantum) discreteness at the price to introduce non-local EFT. 
Conjecture: Discreetness + Lorentz Invariance = Non-Locality

These theories involve a very subtle phenomenology very hard to constraint, still they do show novelties. 
Differently from UV Lorentz breaking physics it will be here a matter of PRECISION instead of HIGH ENERGIES…

Several forms of non-locality

Νon-local kinetic terms 
Non-local interactions 
DSR-like non-locality 

…

Note also Marolf’s theorem: Emergence of Gravity a la Analogue Model+ background 
independence requires different notion of locality between fundamental and emergent dof.



Non-local D’Alambertians

⇤ ! f(⇤)
Generic	expectation	if	you	want	to	introduce	length	or	energy	scale	in	flat	spacetime		

KG	equation	without	giving	up	Lorentz	invariance.

⇤⇢ ⇡ ⇤+
↵
p
⇢
⇤2 +

�
p
⇢
⇤2 ln

✓
�

⇢
⇤2

◆
+ . . .Causal Set Theory

Concrete examples of kinematical non-locality 
respectively with non-analytic or analytic function 

String Field Theory ⇤ ! (⇤+m2
) exp

⇤+m2

⇤2 ⇤ = 1/`nl



Non-local D’Alambertians

A typical signature of non-analytical non-local propagators are violations of the Huygen 
principle: The propagator of massless particles can have support inside the light cone in 3+1

Opportunity for Phenomenology?
R.	H.	Jonsson,	E.	Martin-Martinez,	and	A.	Kempf,	Phys.Rev.Lett.	114,	110505	(2015). Ana	Blasco,	Luis	J.	Garay,	Mercedes	Martin-Benito,	Eduardo	Martin-Martinez.	Phys.Rev.Lett.	114	(2015)	14,	141103	
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Generic	expectation	if	you	want	to	introduce	length	or	energy	scale	in	flat	spacetime		

KG	equation	without	giving	up	Lorentz	invariance.
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+ . . .Causal Set Theory

Concrete examples of kinematical non-locality 
respectively with non-analytic or analytic function 

String Field Theory ⇤ ! (⇤+m2
) exp

⇤+m2

⇤2 ⇤ = 1/`nl

Possibly very relevant for  
relativistic quantum information tests as detectors can influence 

each other at timelike separations
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FIG. 1. Di↵erent causal relationships between Alice and
Bob’s detectors switching periods. These cases are explicitly
specified in Table I. Recall that ⌘i⌫ ⌘ ⌘(Ti⌫), ⌘f⌫ ⌘ ⌘(Tf⌫).

z1 =
min (⌘fA +R, ⌘fB)

R
, z2 =

max (⌘iA +R, ⌘iB)

R
.

(11)

For simplicity, in Eqs. (7)-(8) we have already par-
ticularized the study to the case of zero-gap detectors,
⌦⌫ = 0. This choice is arbitrary and has no e↵ect on
our main results. Moreover, it is not uncommon to find
relevant atomic transitions between degenerate (or quasi-
degenerate) atomic energy levels, for example, atomic
electron spin-flip transitions.

Channel capacity.— Let us now compute the capac-
ity of a communication channel between an early Uni-
verse observer, Alice, and a late-time observer, Bob. To
obtain a lower bound to the capacity, we use a simple
communication protocol: Alice encodes “1” by coupling
her detector A to the field, and “0” by not coupling it.
Later, Bob switches on his detector B and measures its
state. If B is excited, Bob interprets a “1”, and a “0”
otherwise. The capacity of this binary asymmetric chan-
nel (i.e., the number of bits per use of the channel that
Alice transmits to Bob with this protocol) was proven to
be non-zero [5], no matter the level of noise, and it is

TABLE I. Cases of causal relationships. See Fig. 1.

Case Conditions
1 ⌘fB  ⌘iA +R

2 ⌘iB < ⌘iA +R < ⌘fB  ⌘fA +R

3 ⌘iB � ⌘iA +R, ⌘fB  ⌘fA +R

4 ⌘fB > ⌘fA +R > ⌘iB � ⌘iA +R

5 ⌘iB � ⌘fA +R

6 ⌘iB < ⌘iA +R, ⌘fB > ⌘fA +R
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FIG. 2. Channel capacity (in bits) and its �-term as func-
tions of (a) the spatial separation between Alice and Bob, for
TfA � TiA = TfB � TiB = �, TiA = �/30, and TiB = 10�,
(b) the temporal separation between Alice and Bob. In (b),
we vary TiB while keeping TfA � TiA = TfB � TiB = �
constant and we fix TiA = �/30 and R = �/10. Di↵erent
regions are labelled according to the case numbers of Fig. 1
and Table I. Since both detectors remain switched on during
the same amount of proper time, only cases 1 to 5 occur. The
violation of strong Huygens can be seen in region 5 (timelike
separation).

given, at leading order, by

C ' �2
A�

2
B

2

ln 2

✓
S2

4|↵B ||�B |
◆2

+O(�6
⌫). (12)

Figures 2a and 2b show the behavior of the channel ca-
pacity C. For comparison, we also display the channel
capacity in the conformally coupled case, C�. We have
selected initial detector states that, in our case, maxi-
mize the channel capacity (i.e. |↵A| = |�A| = 1/

p
2,

arg(↵A)� arg(�A) = ⇡, arg(↵B)� arg(�B) = ⇡/2).
Let us first analyze how the ability of Alice to signal

Bob depends on their time separation. From the �-term
of Eq. (6) we see that the information transmitted by
‘rays of light’ decays with the distance between A and B,
becoming negligible for long times. This yields the unsur-



Testing non-local EFT with 
optomechanical oscillators

Double Wheel Oscillator - DWO

New version of DWO with torsional joints in the central part that it is
used in the experiment.

1 - Front view of DWO (SEM image) with the central coating 2 - Back view DWO (SEM image) with the insulation
wheel

(INFN Gruppo Collegato Trento) HUMOR 05-07-2012 17 / 29

Heisenberg Uncertainty Measured with Opto-
mechanical Resonators (LENS - Florence, Italy)

HUMOR actually find a length scale to which compare the non-locality one. Indeed
we would like to have

✏ =
l2
nl

�
,

where � is some length scale. One could think about the linear size of the
system or even the DeBroglie wavelength. However there is actually another
scale in the system that is the frequency of the oscillator. One could then
construct

m!

~ ⌘ 1

�
,

that moreover is the variance of the ground state of the oscillator. Then one
could identify

✏ =
m!

~⇤2

as the small dimensionless parameter in which doing the expansion.
NOTE:One could be tempted to do an expansion and a similar analysis

also in the free case, i.e. without a potential. In that case I don’t know what
paremeter could be identify for an expansion. This maybe is good, since in
that case we know that an expansion, with the corresponding truncation of
the operator will only introduce spurious corrections given the fact that a
solution of the local equation is solution also of the non-local one.

2.0.1 Some numbers

~ ⇡ 10�34Kgm2

s
Suppose

m = 1µg = 10�9Kg

and
! ⇡ 5 · 104Hz.

Then our parameter will be

✏ ⇡ 5 · 1029l2
nl

that means
✏⌧ 1, l

nl

⌧
p

2 · 10�14m

This is clearly reasonable since it means that the expansion is justified for a
non-locality scale below the fermi4.

4That however is the raw extimate of the causal set non-locality by Rafael. Note that
here we are not taking into account that model.

5

Designed to test generalised uncertainty principle 
Macroscopic harmonic oscillator. 

m~10-11 / 10-5 Kg    ω~10+5 / 10+3 Hz

A. Belenchia, D. Benincasa, SL, F. Marin, F. Marino, A. Ortolan. 
Phys.Rev.Lett. 116 (2016) no.16, 161303 

in the local limit (assuming a1 = 1).
In the SFT inspired case we explicitly have the non-local Schroedinger

operator
1X

n=0

1

n!

✓
�2m

~2

◆
n 1

⇤2(n�1)

| {z }
a

n

1

⇤2
Sn+1 ⌘ S

NL

. (5)

1.1 Quantum harmonic oscillator

We are interested1 in studying the following equation

(S
NL

� V ) �(t, x) = 0. (6)

Given the di�culty of resolving such an equation exactly we could try a
perturbative approach. In particular I will consider the following ansaz for
the ground state wave function

� = �0 + ✏�1, (7)

where �0 is the ground state for the local case and �1 is a perturbatively
small correction correction to it. Here the parameter that I am considering
as small2 is ✏ = 1

⇤2 . Given now the form of the non-local operator our
equation at the order ✏ gives

(S � V )�1 = �D�0| {z }
J (t,x)

, (8)

whereD =
P1

n=1 a
n

Sn+1. Now we have to solve the local Schodinger equation
for an harmonic oscillator with a source term dependent on the non-local
operator, the local ground state, space and time. For solving this we should
be able to use the Green function method, i.e.

�1(t, x) =

Z 1

�1
dx0

Z
t

�1
dt0

1

~K(x, t; x0, t0)J (x0, t0), (9)

where I am using the notation that can be found on Wikipedia for the Green
function of the quantum harmonic oscillator. Note the causal aspect of the

1In the following I will perform the calculations in 2D.
2Actually this is a dimensional parameter. Is it ok to use it as small parameter in the

perturbative expansion? Note that this is the non-locality scale that we were assuming
playing the game of the small parameter last time.

2

E.g. let’s consider its non-relativistic limit of a non-local KG with analytic f( ). 

in the local limit (assuming a1 = 1).
In the SFT inspired case we explicitly have the non-local Schroedinger

operator
1X

n=0

1

n!

✓
�2m

~2

◆
n 1

⇤2(n�1)

| {z }
a

n

1

⇤2
Sn+1 ⌘ S

NL

. (5)

1.1 Quantum harmonic oscillator

We are interested1 in studying the following equation

(S
NL

� V ) �(t, x) = 0. (6)

Given the di�culty of resolving such an equation exactly we could try a
perturbative approach. In particular I will consider the following ansaz for
the ground state wave function

� = �0 + ✏�1, (7)

where �0 is the ground state for the local case and �1 is a perturbatively
small correction correction to it. Here the parameter that I am considering
as small2 is ✏ = 1

⇤2 . Given now the form of the non-local operator our
equation at the order ✏ gives

(S � V )�1 = �D�0| {z }
J (t,x)

, (8)

whereD =
P1

n=1 a
n

Sn+1. Now we have to solve the local Schodinger equation
for an harmonic oscillator with a source term dependent on the non-local
operator, the local ground state, space and time. For solving this we should
be able to use the Green function method, i.e.

�1(t, x) =

Z 1

�1
dx0

Z
t

�1
dt0

1

~K(x, t; x0, t0)J (x0, t0), (9)

where I am using the notation that can be found on Wikipedia for the Green
function of the quantum harmonic oscillator. Note the causal aspect of the

1In the following I will perform the calculations in 2D.
2Actually this is a dimensional parameter. Is it ok to use it as small parameter in the

perturbative expansion? Note that this is the non-locality scale that we were assuming
playing the game of the small parameter last time.

2

So we get

Where can be test this?

In order to solve the non-local Schroedinger, one needs to adopt a 
perturbative expansion around a “local” Sch. solution

With ϵ the small 
dimensionless 

parameter for this 
problem.
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And at the lowest order we can solve

� = �0 +
1X

n=1

✏n n



Spontaneous squeezing from non-locality

Let’s consider Wigner quasi probability distribution for a coherent state of our quantum harmonic oscillator,

and confront its evolution for a coherent state (easier to experimental realise 
than the ground state) in the case of   S and S+εS2

The Coherent state Wigner function 
shows a periodic almost perfect 

squeezing.

Very difficult to produce 

spontaneously…

P (x, p; t)
1

⇡

Z 1

�1
dy �(x+ y, t)⇤�(x� y, t) e2ipy

Current best bounds on the non-locality scale by comparing nonlocal relativistic EFTs to the 8 TeV LHC data lnl≤ 10−19m 

Forecast with experiment in preparation (in absence of periodic squeezing) imply lnl≤ 10−29m !

rule we shall define the probability density as

⇢(t, x) =
 ⇤(t, x) (t, x)R1

�1 | |2dx , (4.12)

such that
R1
�1 dx ⇢(x) = 1. It should be noted that, for the ground state this normalization

factor is one at order ✏, i.e. h 0| 1i = 0, while in the case of a generic coherent state an

order ✏ time dependent correction will be present. The above normalisation factor ensures

that even in this case we a have a meaningful probability distribution.

4.1 Spontaneous Squeezing of States

Given our probability distribution (4.12) we can now compute the mean and variance of

the position and momentum of the particle. We find

hxi =
p
2↵ cos(t)

✓
1 +

1

4
✏↵2a2 [cos(2t)� 1]

◆
+O(✏2), (4.13)

hpi =
p
2↵ sin(t)

✓
1 +

1

4
✏ a2

⇥
↵2(7 + 3 cos(2t))� 2

⇤◆
+O(✏2), (4.14)

Var(x) =
1

2

�
1� ✏a2

⇥�
6↵2 � 1

�
sin2(t)

⇤�
+O(✏2), (4.15)

Var(p) =
1

2

�
1 + ✏a2

⇥�
6↵2 � 1

�
sin2(t))

⇤�
+O(✏2). (4.16)

It is interesting to note that the expectation values of x and p in the ground state, i.e.

when ↵ = 0, are left unchanged from the standard local case to first order in ✏9. However,

the variance of x and p is modified to order ✏ always, except for the peculiar case where

↵ = ±1/
p
6. Given that also in this case the mean values of x and p still show corrections

of order ✏ we are led to consider this just an accident. Indeed, this is confirmed by going

to order ✏2, where the variances acquire again corrections with respect to the local result

— this time of order ✏2, consistently.

Significantly, we observe that Var(x)Var(p) = 1/4 + O(✏2), thus the perturbed state

is still a state of minimum uncertainty. It undergoes a spontaneous, cyclic, time depen-

dent squeezing in position and momenta, where the name squeezing is justified in view

of the previous observation on its minimal uncertainty. This is shown in Figure 2 AB:

dovremmo citare da qualche parte anche Fig.1....forse in sezine 5?

5 Present Constraints and Forecasts

DB: I have temporarily added the section from the PRL. I will leave the struc-

turing of this whole experimental section to the Franceschi and Antonello.

We now consider the constraints imposed by both existing opto-mechanical experi-

ments and experiments that will be performed in the near future. Let us begin by noting

9The same happens also at the next order.
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Results
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