Measurement of the R<sub>AA</sub> and v<sub>2</sub> of heavy-flavor muons in Pb-Pb collisions at  $\sqrt{s_{NN}}$ =2.76TeV with the ATLAS detector

> Soumya Mohapatra (Columbia University) For the ATLAS Collaboration

> > **IS-2016** Portugal

#### Why measure heavy-flavor Muons

• Heavy-quarks are produced at early times in the A+A collision

- Masses of heavy quarks are much larger than the temperatures of the Quark-Gluon plasma produced in A+A Collisions
  - T<sub>QGP</sub>~200-500 MeV
  - Charm mass: 1.275 GeV
  - Bottom mass : 4.18GeV
- High  $p_{\tau}$  heavy-quarks are expected to lose energy similar to light quarks
  - But with mass dependent modifications
- Low  $p_{\tau}$  heavy-quarks are expected to partially thermalize
- Measurement of heavy-quark suppression and azimuthal anisotropy can
  - Determine if heavy-quarks couple strongly or weakly to the QGP
  - Constrain transport-coefficient ( $\hat{q}$ )
  - Constrain heavy-quark diffusion coefficient

#### Characterizing suppression and azimuthal anisotropy

• Suppression is quantified by the nuclear modification factor  $(R_{AA})$ 

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\frac{1}{N_{\rm evt}} \frac{d^2 N}{dp_{\rm T} d\eta}\Big|_{\rm cent}}{\frac{d^2 \sigma^{pp}}{dp_{\rm T} d\eta}}$$

- Azimuthal anisotropy quantified by Fourier harmonics, v<sub>n</sub>, of azimuthal angle distribution.
  - Leading anisotropy is  $v_2$

$$\frac{dN}{d\phi} = \left\langle \frac{dN}{d\phi} \right\rangle \left( 1 + \sum_{n \ge 1} 2v_n \cos\left(n \left[\phi - \Phi_n\right]\right) \right)$$

#### **ATLAS Detector**



#### Datasets and muon reconstruction

- Analysis uses
  - 140 mub<sup>-1</sup> of Pb+Pb data at 2.76TeV
  - $\circ$  4 pb<sup>-1</sup> of pp data at 2.76TeV

- Muons are measured over
  - 4<p<sub>↑</sub><14 GeV range</li>
  - o **|η|<1**
  - (0-60)% centrality
  - 9.2 Million muons in Pb+Pb and 1.8 Million muons in pp

- Muons are reconstructed by associating Muon Spectrometer (MS) muons with Inner Detector (ID) Tracks
  - Signal Muons: Prompt muons produced near the interaction point (dominated by HF muons)
  - Background muons:
    - In-flight decays of  $\pi/K$ ,
    - muons produced from secondary interactions
    - mis-associations

#### Prompt Muon Identification



# $\Delta p/p_{ID}$ distributions for prompt and non-prompt muons (from MC)



- Signal distributions centered at zero
- Background distributions have large positive value (p<sub>MS</sub> than expected from prompt muons)

#### **Template fits: Data**



$$\frac{\mathrm{d}N}{\mathrm{d}\Delta p/p_{\mathrm{ID}}} = N_{\mu} \left( f^{\mathrm{sig}} \frac{\mathrm{d}P^{\mathrm{sig}}}{\mathrm{d}\Delta p/p_{\mathrm{ID}}} + (1 - f^{\mathrm{sig}}) \frac{\mathrm{d}P^{\mathrm{bkg}}}{\mathrm{d}\Delta p/p_{\mathrm{ID}}} \right)$$

- Panels show  $\Delta p/p_{ID}$  distributions in data together with template fits
- Top row  $5 < p_T < 5.5$  GeV, bottom row  $10 < p_T < 12$  GeV
- Left two columns are Pb+Pb, right column is pp

#### **Signal Fractions**



Fraction of prompt muons as function of  $p_{\tau}$ 

#### Corrected spectra and cross-section of HF muons



## Nuclear modification factor: R<sub>AA</sub>



- Significant suppression is observed
- Suppression increases with centrality
- No pT dependence!

## $R_{AA}$ : comparison to $R_{CP}$





Quite Consistent with previous R<sub>CP</sub> measurements

### R<sub>AA</sub>:comparison to inclusive hadrons





JHEP09 (2015) 050

Smaller suppression is seen for muons compared to hadrons, over the same pT range





PRL 114 (2015) 072302

Similar suppression to Jets: weak pT dependence!

(Not apples to apples comparison) <sup>14</sup>

## R<sub>AA</sub>:mid vs forward rapidity



Consistent with suppression at forward rapidity (ALICE)

No  $p_{T}$  dependence seen there as well

ALICE results: PRL 109, 112301 (2012)



## R<sub>AA</sub>:comparison to RHIC





PHENIX Results: PRL.98, 172301 (2007)

Smaller suppression that what seen at RHIC (over same  $p_T$  range) More consistent with theoretical calculations

#### Event-plane dependence of signal fractions



#### Prompt muon anisotropy wrt $\Psi_2$ plane



Larger Yields in the "in-plane" direction as compared to "out of plane-direction"

#### Prompt muon $v_2$ : $p_T$ dependence



#### Prompt muon $v_2$ : $p_T$ dependence, comparison to hadrons



p<sub>\_</sub> [GeV]

20

hadrons

#### Prompt muon v<sub>2</sub>: centrality dependence



## Prompt muon v<sub>2</sub>: centrality dependence, comparison to hadrons



#### Prompt muon $v_2 \& R_{AA}$ : comparisons to ALICE



#### Summary

 ATLAS has measured prompt muons from HF decays in Pb+Pb and pp collisions at 2.76 TeV

#### • R<sub>AA</sub>

- Centrality dependent suppression is observed
- Weaker suppression as compared to inclusive hadrons
- No  $p_{\tau}$  dependence of suppression, very different than inclusive hadrons
- Consistent with R<sub>CP</sub> measurements and with forward rapidity measurements

#### • V<sub>2</sub>

- $\sim$  Significant v<sub>2</sub> is observed
- $v_{2}$  v<sub>2</sub> decreases with increasing p<sub>T</sub> (for mid-central events)
- Smaller than inclusive hadron  $v_2$ , but similar shape

#### Systematic Uncertainties : Yields

| Uncertainty               | p <sub>T</sub> Range [GeV] | Value             |  |
|---------------------------|----------------------------|-------------------|--|
| Trigger Efficiency        | 414                        | 14%               |  |
| Muon selection cuts       | 44.5, >7                   | 1.5, 3%           |  |
| P <sub>MS</sub> cut       | 414                        | 31 %              |  |
| Template (background)     | 414                        | 71 %              |  |
| p <sub>T</sub> resolution | 414                        | 1 (2 for pp) %    |  |
| Cut Method                | 4-14                       | 106% (156 for pp) |  |
|                           |                            |                   |  |

#### Systematic Uncertainties : v<sub>2</sub>

| $p_{\rm T}$ interval              | $4 < p_T < 5 \text{ GeV}$ |        | $6 < p_{\rm T} < 10 \text{ GeV}$ |        | $10 < p_{\rm T} < 14  {\rm GeV}$ |        |
|-----------------------------------|---------------------------|--------|----------------------------------|--------|----------------------------------|--------|
| Centrality                        | 0–10%                     | 40-60% | 0-10%                            | 40-60% | 0-10%                            | 40-60% |
| Muon selection cuts [%]           | 2                         | 1      | 2                                | 2      | 2                                | 5      |
| $p_{\rm MS}$ cuts [%]             | 1                         | 4      | 0                                | 0      | 0                                | 0      |
| Background Template variation [%] | 1                         | 2      | 2                                | 3      | 3.5                              | 40     |
| $p_{\rm T}$ resolution [%]        | 1                         | 0      | 4                                | 2      | 25                               | 70     |
| EP resolution [%]                 | 2.5                       | 4      | 2.5                              | 4      | 2.5                              | 4      |

Table 2: Relative systematic uncertainties on the heavy flavor muon  $v_2$ , quoted in percent, for selected  $p_T$  and centrality intervals. They are averaged over  $p_T$  intervals that are larger than the intervals used for the measurement.

### ${\rm T}_{\rm AA}$ and its uncertainties

| Centrality interval [%] | $\langle T_{\rm AA} \rangle  [{\rm mb}^{-1}]$ |  |  |  |
|-------------------------|-----------------------------------------------|--|--|--|
| 0–10                    | $23.45 \pm 0.37$                              |  |  |  |
| 10–20                   | $14.43 \pm 0.30$                              |  |  |  |
| 20–30                   | 8.73 ± 0.26                                   |  |  |  |
| 30-40                   | $5.04 \pm 0.22$                               |  |  |  |
| 40–60                   | $2.02 \pm 0.15$                               |  |  |  |