Hot Spots and the Hollowness of Proton-Proton interactions

Alba Soto Ontoso
+ Javier L. Albacete

to appear (SOON) on arXiv:1605.

1. Motivation

$p p$ elastic scattering

- TOTEM data on elastic differential cross section in pp collisions at 7 TeV

Hollowness effect

- The hollowness/grayness effect in $p p$ interactions @LHC

$$
\bar{G}_{\mathrm{in}}(s, \overrightarrow{\vec{b}})=2 \operatorname{Im}_{-} \tilde{T}_{\mathrm{el}}\left(s, \overrightarrow{\vec{b})}-\left|\overline{\widetilde{T}}_{\mathrm{el}}(s, \overrightarrow{\vec{b}})\right|^{\overline{2}}\right.
$$

$$
\bar{G}_{\text {in }}=\mathrm{d}^{2} \sigma_{\text {inel }} / \mathrm{d}^{2} b
$$

Contributes more to

[Ruiz-Arriola et Al. '15]

- Not observed @ISR and no dynamical explanation @market

Hollowness effect

- The hollowness/grayness effect in $p p$ interactions @LHC

Contributes more to

- Not observed @ISR and no dynamical explanation @market

Hollowness effect

- We have performed an independent analysis

- ii The inelasticity density of the collision does not reach a maximum at $\mathrm{b}=0$!!

Problem to solve

- The inelasticity density exhibits a maximum at $\mathrm{b}>0$: hollowness effect
- Peripheral collisions are more destructive.
- Pure convolution models are precluded.
- It disappears at ISR energies.
- Constrain the transverse structure of the proton
- Implications in harmonic flow coefficients.

2. Ingredients

The model

- To construct the elastic scattering amplitude in $p p$ collisions Gluonic hot-spots as effective d.o.f

Hot spots

- Assumption: the gluon content of the proton concentrated in small domains

$$
\Gamma_{-} \bar{R}_{h s}<\overline{<} \bar{R}_{p}^{-}
$$

- Open debate: they may be radiatively generated from valence quarks in DGLAP or BFKL-like cascades (growth with energy)

/instantons / combination of perturbative and non perturbative physics
[Kopeliovich et Al. '99, Braun et Al. '93, Schafer et Al. '98, Kovner '02, Shuryak'04, Schenke et Al.'15...]
\checkmark Smallness of the correlation length of the gluon field in lattice QCD.
[DiGiacomo et Al. '92]
\checkmark Phenomenological tool [Kopeliovich et Al. $\left.{ }^{1} 07\right]$

Glauber model

- $p p$ interactions as a collision of two systems A and B, each one composed of 3 hot spots

$-\vec{b}$: impact parameter of the collision.
- \vec{s}_{i} : transverse positions the hot spots.
- $D\left(\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right)$: density distribution of hot spots.
- $\Theta_{i j}\left(\vec{b}+\vec{s}_{i}^{A}-\vec{s}_{j}^{B}\right)$: elastic amplitude of the i-th and j-th hot spot interaction.

$$
\Theta\left(s_{i j}\right)=\mathrm{i} \exp \left(-s_{i j}^{2} / 2 R_{h s}^{2}\right)\left(1-\mathrm{i} \rho_{h s}\right)
$$

Spatial correlations

- The general structure that we consider for $D\left(\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right)$

$$
D\left(\left\{\vec{s}_{i}\right\}\right)=C\left(\prod_{i=1}^{3} d\left(\vec{s}_{i} ; R\right)\right) \times f\left(\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right)
$$

- C : normalization constant.
- $d\left(\vec{s}_{i} ; R\right)$: uncorrelated probability distribution for a single hot spot.

$$
\Gamma_{-} \bar{d}\left(\overline{s_{i}} ; \bar{R}\right)=\overline{\exp }\left(-s_{i}^{2} / \bar{R}^{2}\right)
$$

$-f\left(\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right)$: correlation structure.

Spatial correlations

$$
\begin{aligned}
& f\left(\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right)=\delta^{(2)}\left(\vec{s}_{1}+\vec{s}_{2}+\vec{s}_{3}\right) \prod_{i<j}\left(1-e^{-\mu\left|\vec{s}_{i}-\vec{s}_{j}\right|^{2} / R^{2}}\right) \\
& \\
& \\
&
\end{aligned}
$$

$-\delta^{(2)}\left(\vec{s}_{1}+\vec{s}_{2}+\vec{s}_{3}\right)$: fixes the center of mass of the hot spots system.
$-\prod_{i<j}^{3}\left(1-e^{-\mu\left|\vec{s}_{i}-\vec{s}_{j}\right|^{2} / R^{2}}\right):$ repulsive short-range correlations controlled by

$$
i, j=1
$$

- Similar correlation structure than 3D models (when projected)

Quark-Diquark:

Baryon junction:

Spatial correlations

- Averaged hot spot-hot spot transverse distance for different $D\left(\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right)$

Conventions

- $\frac{\mathrm{d} \sigma_{\mathrm{el}}}{\mathrm{d} t}=\frac{1}{4 \pi}\left|T_{\mathrm{el}}(s, t)\right|^{2}$
- $T_{\mathrm{el}}(s, t)=\int \mathrm{d}^{2} b \widetilde{T}_{\mathrm{el}}(s, \vec{b}) e^{-\mathrm{i} \vec{q} \cdot \vec{b}}$
- $\sigma_{\mathrm{el}}=\int \mathrm{d}^{2} b\left|\widetilde{T}_{\mathrm{el}}(s, \vec{b})\right|^{2}$
- $\sigma_{\text {tot }}=2 \operatorname{Im} T_{\text {el }}(s, 0)=2 \int \mathrm{~d}^{2} b \operatorname{Im} \widetilde{T}_{\mathrm{el}}(s, \vec{b})$
- $\sigma_{\mathrm{in}}=\sigma_{\mathrm{tot}}-\sigma_{\mathrm{el}}=\int \mathrm{d}^{2} b 2 \operatorname{Im} \widetilde{T}_{\mathrm{el}}(s, \vec{b})-\left|\widetilde{T}_{\mathrm{el}}(s, \vec{b})\right|^{2}$
- $\rho=\frac{\operatorname{Re} T_{\mathrm{el}}(s, 0)}{\operatorname{Im} T_{\mathrm{el}}(s, 0)}$
${ }^{-} G_{\mathrm{in}}(s, \vec{b})=2 \operatorname{Im} \widetilde{T}_{\mathrm{el}}^{-}(s, \overline{\vec{b}})-\left|\overline{\widetilde{T}}_{\mathrm{el}}(s, \bar{b})\right|^{2}$

3. Results

- We scan the parameter space with the conditions

Maximum of the elastic amplitude: $\frac{d^{2} \widetilde{T}(s, 0)}{d^{2} b}<0$

Maximum of the inelastic density: $\frac{d^{2} G_{\text {in }}(s, 0)}{d^{2} b}>0$

\mathbf{R}_{p} vs \mathbf{R}_{hs}

- For $r_{c}=0.5 \mathrm{fm}$ and $\rho_{h s}=0.1$,

- Up to this point, purely geometric approach. No energy dependence.

R_{p} vs R_{hs} Conditions

- To be compatible with the phenomenology

Maximum of the elastic amplitude: $\frac{d^{2} \widetilde{T}(s, 0)}{d^{2} b}<0$

Maximum of the inelastic density: $\frac{d^{2} G_{\text {in }}(s, 0)}{d^{2} b}>\left.0\right|_{\text {LHC }}$

$$
\frac{d^{2} G_{\text {in }}(s, 0)}{d^{2} b}<\left.0\right|_{\mathrm{ISR}}
$$

Phenomenological constraints:

- LHC, $7 \mathrm{TeV}: \sigma_{\text {tot }}=9,83 \pm 0.28\left[\mathrm{fm}^{2}\right] \quad \rho=0.14_{-0.08}^{+0.01}$
- ISR, $62.5 \mathrm{GeV}: \sigma_{\text {tot }}=4,332 \pm 0.023\left[\mathrm{fm}^{2}\right] \rho=0.095 \pm 0.018$

R_{p} vs $\mathrm{R}_{\mathrm{hs}} \quad \mathbf{r}_{\mathrm{c}}=0.5 \mathrm{fm}$

R_{p} vs $\mathrm{R}_{\mathrm{hs}} \quad \mathrm{r}_{\mathrm{c}}=0.5 \mathrm{fm}$

\mathbf{R}_{p} vs $\mathrm{R}_{\mathrm{hs}} \quad \mathbf{r}_{\mathrm{c}}=0.3 \mathrm{fm}$

\mathbf{R}_{p} vs $\mathbf{R}_{\mathrm{hs}} \quad \mathbf{r}_{\mathrm{c}}=\mathbf{0} \mathbf{f m}$


```
R
```


R_{p} vs R_{hs}

What about LHC @ 13 TeV?

- LHC, $13 \mathrm{TeV}: \quad \sigma_{\text {tot }}=11,15 \pm 1\left[\mathrm{fm}^{2}\right] \quad \rho=0.14_{-0.08}^{+0.01}$ [COMPETE Collab. '02]

4. Conclusions

Take home message

- New and intriguing feature of hadronic interactions: hollowness effect.
- We propose a dynamical explanation based on:
- Hot spots as the effective degrees of freedom.
- Non-trivial correlations between the transverse positions of the hot spots.
- Scattering amplitude from a Glauber-like multiple scattering series.
- Diffusion/growth of the hot spots in the transverse plane with increasing collision energy is the key mechanism to explain the hollowness effect.
- Future work: impact of this new effect in other observables in $p p$ and heavy ion collisions: flow harmonics, multiplicities...

Take home message

Round vs. structured proton: IP-Glasma + Music

It makes a huge difference!

Back up

$p p$ elastic scattering

- Our approach starts from a generic parametrization

$$
\begin{aligned}
& \operatorname{Im} T_{e l}(s, t)=a_{1} e^{b_{1} t}+a_{2} e^{b_{2} t}+a_{3} e^{b_{3} t} \\
& \operatorname{Re} T_{e l}(s, t)=c_{1} e^{d_{1} t}
\end{aligned}
$$

- Fit parameters are subject to two phenomenological constraints
- Minimal number of parameters to reduce correlations

$p p$ elastic scattering

