

Defining "near future"

LHC schedule through Run 3

Pb+Pb @
$$\sqrt{s_{NN}}$$
 = 5.5 TeV peak collision rate \approx 50 kHz

←past now

far future→

Defining "near future"

←past now

far future→

BNL's plan for the same time period

Years	Beam Species and	Science Goals	New Systems
2014	Au+Au at 15 GeV Au+Au at 200 GeV ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	p [†] +p [†] at 200 GeV p [†] +Au, p [†] +Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ?	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
2017	p : +p : at 510 GeV	Transverse spin physics Sign change in Sivers function	
2018	No Run		Low energy e-cooling install. STAR iTPC upgrade
2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling
2021-22	Au+Au at 200 GeV p [↑] +p [↑] , p [↑] +Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
≥ 2023 ?	No Runs		Transition to eRHIC

BNL's plan for the same time period

Years	Beam Species and	Science Goals	New Systems
2014	Au+Au at 15 GeV Au+Au at 200 GeV ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	p [†] +p [†] at 200 GeV p [†] +Au, p [†] +Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ? d+Au @ 200, 62, 39, 20 GeV	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
2017	p:+p: at 510 GeV	Transverse spin physics Sign change in Sivers function	
2018	No Run isobars		Low energy e-cooling install. STAR iTPC upgrade
2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling
2022-23 2021-22	Au+Au at 200 GeV p [↑] +p [↑] , p [↑] +Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
≥ 2023 ?	No Runs		Transition to eRHIC

What are "new experimental conditions"?

- Changes to beam conditions
 - novel collision systems
 - new collision energies
 - higher luminosity

Focus here on how experiments are preparing to use these beam conditions

- Changes to experimental equipment
 - higher DAQ rates
 - improved triggering capabilities
 - · adding, improving, or replacing subdetectors or even whole experiments
- Every single one of these things is happening over the next years

superSONIC calculations of d+Au Eur. Phys. J., C75(1):15 (2015)

discussion of pre-flow at IS2014 J. Orjuela-Koop's talk IS2016

d+Au beam energy scan: recorded 1.1B events at 200 GeV, successful 62.4 GeV just completed, switching to 20 GeV today!

d+Au @ 200 GeV – 20x 2008 data improved event plane via endcap silicon detectors

role of pre-equilibrium flow, time spent in low viscosity sQGP phase – v₃ provides additional sensitivity

superSONIC calculations of d+Au Eur. Phys. J., C75(1):15 (2015)

discussion of pre-flow at IS2014 J. Orjuela-Koop's talk IS2016

d+Au beam energy scan: recorded 1.1B events at 200 GeV, successful 62.4 GeV just completed, switching to 20 GeV today!

d+Au @ 200 GeV – 20x 2008 data improved event plane via endcap silicon detectors

role of pre-equilibrium flow, time spent in low viscosity sQGP phase – v₃ provides additional sensitivity

RHIC Run-18

Future RHIC Run Plans: The plan for RHIC runs before the BES-II has recently been refined to include independent runs in 2017 and 2018. The change is driven by the desire to permit a sufficiently long run with transversely polarized p+p collisions at 510 GeV in Run-17 (up to 19 cryo-weeks depending on budgetary constraints) to "test unique QCD predictions for relations between single-transverse spin phenomena in p-p scattering and those observed in deep-inelastic scattering" (NP Milestone HP13), and the plan to collide isobars (96Zr+96Zr and 96Ru+96Ru) at 200 GeV in Run-18 (13 cryo-weeks) as a critical test of the contribution from the possible Chiral Magnetic Effect to the various observed charge separation effects.

BNL ALD Berndt Mueller – two weeks ago

If observed effects are due to CME, should scale with Z^2

widely separated correlations now needed to be established at very early times

STAR upgrades for η coverage, EP determination

- What is the structure of the initial state and how does it evolve with rapidity?
- Over what rapidity range does coherence in the initial state persist?
- What mechanism or mechanisms transport baryons toward mid-rapidity?
- How large are hydrodynamic fluctuations and how far do they spread in rapidity space?

Event plane detector for STAR in the BES II

F. Videbaek WWND'15

LHCb

design driven by LHCb primary physics goals: very welcome "side benefit" excellent forward & backward capability in p+Pb

LHCb: moderating occupancy effects with granularity

- LHCb took part in the PbPb running as well
 - Analysis of Pb-Pb data commencing
 - Expected centrality reach at around 50%

Pb+p configuration puts high multiplicity into acceptance

- Johan Blouw IS2016

ALICE upgrades: strategy for exploiting luminosity

MAPS-based inner tracker (ITS and MFT)

very low mass, very fast, very precise ITS: read out Pb+Pb > 100 kHz 40 μ m [z,r ϕ] at low p_T = 500 MeV/c

TPC: read out Pb+Pb ~ 50 kHz

capability to employ heavy flavors down to low p_T in manner analogous to light flavors: v_n, R_{AA}

Example: Low mass di-electrons

- Increase statistics
- Suppress combinatorial background (π⁰ Dalitz decays, photon conversion)
- Reduce systematic uncertainty from semi-leptonic charm decays
 - Improved secondary vertex resolution

CMS and ATLAS: employing complex triggers

approach to selecting desired events builds on trigger infrastructure developed for p+p being employed very successfully in Pb+Pb and p+Pb

- ► Uses $L_{\text{int}} = 515 \,\mu\text{b}^{-1}$ of data with a special UPC muon trigger
 - ➤ Loose muon L1 trigger
 - ► Limit of total $E_{\rm T}$ < 50 GeV at L1
 - ➤ Maximum of 1 hit in both MBTS inner rings
 - ➤ At least one track with 400 MeV measured by high-level trigger tracking algorithm

CMS D⁰ G M Innocenti IS2016 "At L1, the triggers relied on minimum bias and jet seeds. At HLT, the D meson trigger ran global track reconstruction, including the reconstruction of displaced tracks of secondary origin. Events were saved if the mass of the D-meson candidates were compatible with the expected mass."

P. Steinberg IS2016

ATLAS UPC

Kaya Tatar and Krisztián Krajczár (MIT)
 poster at LHCC meeting March 2016

CMS and ATLAS: employing complex triggers

approach to selecting desired events builds on trigger infrastructure developed for p+p being employed very successfully in Pb+Pb and p+Pb

- ► Uses $L_{\text{int}} = 515 \,\mu\text{b}^{-1}$ of data with a special UPC muon trigger
 - ➤ Loose muon L1 trigger
 - ► Limit of total $E_{\rm T}$ < 50 GeV at L1
 - ➤ Maximum of 1 hit in both MBTS inner rings
 - ➤ At least one track with 400 MeV measured by high-level trigger tracking algorithm

"At L1, the triggers relied on minimum bias and jet seeds. At HLT, the D meson trigger ran global track reconstruction, including the reconstruction of displaced tracks of secondary origin. Events were saved if the mass of the D-meson candidates were compatible with the expected mass."

P. Steinberg IS2016

Kaya Tatar and Krisztián Krajczár (MIT)
 poster at LHCC meeting March 2016

ATLAS UPC

Initial stages physics via triggering in p+p, p+Pb

gluon nPDFs through dijet η distribution, vector bosons (W/Z/ γ) and di-b-jets

Process	$N_{ m evts}$	$N_{ m evts}$	Gain	Reference
	at 5.02 TeV	at 8.16 TeV		
Z bosons	3 900	24 000	6.1	[5]
W bosons	21 000	130 000	6.1	[6]
$J/\psi \ (p_{\rm T} > 8.5 \ {\rm GeV})$	13 000	93 000	7.2	[4, 7]
$\psi(2s) \ (p_{\rm T} > 8.5 \ {\rm GeV})$	500	3 600	7.2	[<mark>7</mark>]
$\Upsilon(1s) \ (p_{\rm T} > 0 \ {\rm GeV})$	4 500	32 000	7.1	[8]
$\Upsilon(2+3s) \ (p_{\rm T}>0 \ {\rm GeV})$	2 000	14 000	7.0	[8]
DPS: $W + 2 \text{ jets } (p_T > 20 \text{ GeV})$	980	7 000	7.1	[9, 10]
Drell–Yan $(p_T^1 > 9 \text{ GeV}, p_T^2 > 6 \text{ GeV})$	700	4 000	5.7	[11]
$\gamma \gamma \ (p_{\rm T}^1 > 25 \ {\rm GeV}, \ p_{\rm T}^2 > 22 \ {\rm GeV})$	150	1 000	6.7	[12]
4 jets $(p_T^1 > 100 \text{ GeV}, p_T^{2,3,4} > 64 \text{ GeV})$	_	190 000	_	[13]
tt-bar	7	90	13.3	[14, 15]

Complex events – e.g. 4-jet sensitivity to MPI Blok, Strikman, Wiedemann, EPJ C, 73(6):1, 2013

Meanwhile, at RHIC in the 2020s ...

Years	Beam Species and	Science Goals	New Systems
2014	Au+Au at 15 GeV Au+Au at 200 GeV ³ He+Au at 200 GeV	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD
2015-16	p [†] +p [†] at 200 GeV p [†] +Au, p [†] +Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ? d+Au @ 200, 62, 39, 20 GeV	Extract η/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests	PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test
2017	p:+p: at 510 GeV	Transverse spin physics Sign change in Sivers function	
2018	No Run isobars		Low energy e-cooling install. STAR iTPC upgrade
2019-20	Au+Au at 5-20 GeV (BES-2)	Search for QCD critical point and onset of deconfinement	Low energy e-cooling
2022-23 2021-22	Au+Au at 200 GeV p [†] +p [†] , p [†] +Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different qualkonia Forward spin & initial state physics	sPHENIX Forward upgrades ?
≥ 2023 ?	No Runs		Transition to eRHIC

sPHENIX: A fantastic* high-rate capable detector at RHIC IP8, built around the former BaBar 1.5 T superconducting solenoid, with full electromagnetic and hadronic calorimetry and precision tracking and vertexing, with a core physics program focused on light and heavy-flavor jets, direct photons, Upsilons and their correlations in p+p, p+A, and A+A to study the underlying dynamics of the QGP – physics delivered by 22 weeks of Au+Au, 10 weeks each of p+p and p+A (@ 200 GeV).

sPHENIX in one plot

Vacuum virtuality evolution initially, with medium influence becoming significant as virtuality of parton shower and medium become comparable

sPHENIX reach exploits RHIC luminosity

for measurements able to use full vertex range – can sample 0.6 trillion events

RHIC luminosity: more differential measurements

RHIC/LHC measurements in 2020s

Looking forward to the near future

- detectors: as you'd hope, lower mass, higher granularity, larger η coverage, faster readout – but these represent major technical accomplishments
- triggering: much more complex decisions possible utility is already on display
- fully exploiting luminosity complementary strategies being pursued,
 high throughput readout and/or highly complex triggering
- physics relevant to initial stages particularly benefits from these developments
- PHENIX ending data taking; sPHENIX preparing to move in