Reconstructed jet probes of small and large systems with the PHENIX detector

Dennis V. Perepelitsa
(for the PHENIX Collaboration)
Brookhaven National Laboratory

24 May 2016
Lisbon, Portugal
3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions
Jets in **small** and **large** systems

- Benchmark of jet production in nuclear environment
- Given collective signatures, search for “QGP”-like energy loss?
 - see talk by J. Orjuela-Koop

\[
R_g(x, Q^2 = 100 \text{ GeV}^2)
\]

- Parton shower develops **in evolving QGP medium**
 - internally-generated, multi-scale probe of QGP properties

Salgado et al., hep-ph/1105.3919 comparing nuclear PDF sets

\[
\begin{align*}
\log x & \quad 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & 1 \\
R_g & \quad 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 1.2 & 1.4 \\
\end{align*}
\]
- **Drift & pad chambers** for measuring charged-particle tracks
 - both subsystems cover $|\eta| < 0.35$, with two $\Delta \phi = \pi/2$ arms
- **Electromagnetic calorimeters** with $\approx 18\lambda$ (PbSc) or $\approx 14\lambda$ (PbGl)
- **Beam-beam counters** $(2.1 < |\eta| < 3.8)$ provide MB event definition and centrality classification
- Online hardware-based trigger on energy deposit in EMCal
Analysis overview

- Cluster EMCal **energy deposits** + charged-particle **tracks**
 - jet core required to be away from detector edge
 - strict run-level, particle-level, jet-level QA to ensure *good measurement of jet energy*

- GEANT simulation of detector response & embedding into minimum-bias HI data events

- Capture $\approx 0.65-0.70$ of jet momentum on average
 - 25% “resolution” from fluctuations in (mostly unmeasured) **neutral hadronic** component
 - correct spectra for detector effects with unfolding
Jet results from PHENIX

- **d+Au** and **p+p** jet spectra (2008 data)
 - $R=0.3$ anti-k_t algorithm, *establish pQCD and cold nuclear matter baseline*

- **Cu+Au** and **p+p** jet spectra (2012 data)
 - Preliminary measurement, $R=0.2$ anti-k_t algorithm due to demands of HI environment
 - *first look at inclusive suppression of full jets*
Jet spectra in $p+p$ collisions

- $p+p$ spectra: compare favorably with NLO pQCD calculation
 - validates jet reconstruction & correction procedure

Jet spectra in $p+p$ collisions

$\sqrt{s} = 200$ GeV

anti-k_t, $R=0.3$ jet

PHENIX

NLOJET++ w/ NNPDF2.3 and hadronization corrections from Pythia

• $p+p$ spectra: compare favorably with NLO pQCD calculation
 - validates jet reconstruction & correction procedure
Jet yields in $d+Au$

- First measurement of jet production in asymmetric systems at RHIC

- Centrality from with Au-going beam-beam counter ($-3.8 < \eta < -2.1$) signal

$\sqrt{s_{NN}} = 200$ GeV

Anti-k_t, $R=0.3$ jet

PHENIX

N_{coll} values in the different centrality selections according to the Glauber model, from [242].

The mean number of binary collisions in each centrality category are given by

- $N_{coll} = 15.061 \pm 1.013$ for 0-20% collisions
- $N_{coll} = 10.248 \pm 0.704$ for 20-40% collisions
- $N_{coll} = 6.579 \pm 0.444$ for 40-60% collisions
- $N_{coll} = 3.199 \pm 0.193$ for 60-88% collisions

BBC fires on this fraction of the inelastic $d+Au$ cross-section. Thus, the data is partitioned into four centrality categories consisting of the highest-20/88ths of the data, called "0-20%", and all the way down to the lowest-28/88ths of the data, called "60-88%". Then, the mean N_{coll} and N_{part} are taken from the corresponding selection in the Glauber distribution. The distribution of N_{coll} values in each centrality bin is shown in Figure 6.15.

The final systematic uncertainties on the mean N_{coll} (and other geometric quantities) are derived from a number of sources, including variations in the Glauber MC parameters as well as repeating the fit procedure with the mean BBC Charge parameterized in terms of N_{part} instead of N_{coll}.

$d+Au @ 200$ GeV Results

Minimum Bias 0-100\% $<N_{coll}> = 7.590$

- Centrality 00-20\% $<N_{coll}> = 15.061$
- Centrality 20-40\% $<N_{coll}> = 10.249$
- Centrality 40-60\% $<N_{coll}> = 6.590$
- Centrality 60-88\% $<N_{coll}> = 3.199$

NLO pQCD

p+p

(a)

(b)

0-20\%, $\times 10^4$

20-40\%, $\times 10^3$

40-60\%, $\times 10^2$

60-88\%, $\times 10$

\(p+p/\text{fit}\ d^2N/dp_T^2dh/dN_{coll} = T_{dA}\) (mb / GeV)

\(p+p/\text{fit}\ d^2N/dp_T^2dh/dN_{coll} = T_{dA}\) (mb / GeV)

Chapter 6. Direct Jet Reconstruction in $D+Au$ Collisions

167

successful with previous hard and soft observables
Minimum bias jet rate

\[R_{dAu} = \frac{dN^{d+Au}/dp_T}{T_{dA} \times d\sigma^{p+p}/dp_T} \]

- In centrality-integrated collisions, \(R_{dAu} = 1 \)
 - consistent with global nuclear PDF analyses (EPS09)
 - within an initial state E-loss calculation, favors only small parton ↔ nuclear material momentum transfer
Centrality-selected jet rate

PHENIX $d+Au$, $\sqrt{s_{\text{NN}}} = 200$ GeV, anti-k_t, $R=0.3$ jet

- 60-88%
- 20-40%
- 40-60%
- 0-20%
- E-loss 0-20% (Kang et al)

Key Observations

- **Suppression of jet rate in central 0-20%** (large N_{coll}) events
 - comparable with initial state E-loss calculation?

- **Enhancement in 40-60% and 60-88%** (small N_{coll}) events
 - very challenging to explain within existing frameworks...
- Occam’s razor: jet production unmodified, but multiplicity in Au-going direction is modified in jet events
 - e.g. jet events merely re-rearranged in centrality, so minimum-bias $R_{dAu} = 1$ by construction
Analogous LHC results

Same modification pattern, in the same Bjorken-x range

Modifications scale with proton-x and do not depend on nuclear-x...
Common “initial state” proton-x effect at RHIC and the LHC?
Proton spatial configurations

\[|\psi_{proton}> = (3q) + (3q+g) + (3q+\pi) + \ldots \]

\[|\psi_{proton;\ large\ x}> \approx (3q) \]

- **One idea:** this is a consequence of proton color fluctuations at collider energies
 - correlation between *spatial* and *momentum* structure
 - configurations with a high-\(x\) parton (\(\approx 0.1\)) are “small”: fewer other partons, smaller transverse size, etc.

See also Bzdak et al. hep-ph/1408.3156, Armesto et al. PLB 747 (2015) 441
Geometric interpretation

“typical” nucleon

“compact” nucleon

compact, large-x proton configurations *strike fewer nucleons*

N_{jet} expectation

N_{coll} data
Projectile-species dependence

- Explore these effects further this with a “projectile-species” scan at RHIC
- For QGP-induced E-loss:
 - \(R_{p\text{Au}} > R_{d\text{Au}} > R_{3\text{He+Au}} \) (central events)
- For a shrinking proton size, effect washed out by \(1/A_{\text{projectile}} \):
 - \(R_{p\text{Au}} < R_{d\text{Au}} < R_{3\text{He+Au}} \) (central events)
- After tuning a simple model to \(d+\text{Au} \), predict \(p+\text{Au} \) and \(3\text{He+Au} \)
 - DVP, J. Nagle, D. McGlinchey, nucl-th/1603.06607
Jet suppression in Cu+Au

Preliminary measurement of R_{AA} in relatively novel system

➡ in 0-20% collisions, R_{AA}~0.5 and is p_T-independent
➡ differential suppression with increasing N_{part}

 пят А. Тимилсина

For more information, see QM15 talk & proceedings by A. Timilsina
Summary

• Progress on jet measurements in small and large systems with PHENIX detector
 - good guidance for future heavy ion jet program at RHIC

• Jet rate in $p+p$ and minimum bias $d+Au$ collisions establish pQCD / nPDF baseline
 - limits on initial/final state energy loss over wide p_T

• Surprising, unexpected centrality dependence
 - one possibility: are we sensitive to the fact that large-x nucleons are “smaller” than average?

• Preliminary measurement of jet suppression in Cu+Au
backup
Jets in heavy ion collisions

- Jets are most abundant final-state QCD object
- Full jet reconstruction difficult but rewarding in HI collisions

- In this talk, *progress in jets from PHENIX at RHIC*
Jet spectra in $p+p$ and Cu+Au

- For preliminary results, arbitrary normalization, but $p+p$-to-Cu+Au normalization is fixed.
- Expanded systematics for low-p_T jets in most central events.
Could this be a bias or auto-correlation between the centrality signal and the presence of a hard scattering?

PHENIX published PRC 90 (2014) 034902 to address this point with p+p data and d+Au simulation.

Conclusion: there is a small bias which, when corrected for, magnifies the results, even for very high-p_T processes.
is this just a feature of \(pp \) collisions?

\[\Sigma E_T \] in target proton direction

\[\Sigma E_T \] at large pseudorapidity vs. \(\mathbf{x} \) in the \textbf{projectile} proton (moving away)

\[\mathbf{x} \] in the \textbf{target} proton (moving towards)

ATLAS, PLB 756 (2016)
ATLAS Preliminary

$pp, \sqrt{s} = 2.76$ TeV

$\langle \Sigma E_T \rangle^{\text{ref}} = \langle \Sigma E_T \rangle(\rho^{\text{avg}}_{T} \in 50-63$ GeV, $|\eta_{\text{dijet}}| < 0.3)$

MC / Data

$0 \leq x \leq 1$

x in Pb “nucleon”

x in “proton”

Data, 4.0 pb$^{-1}$

PYTHIA 6 AUET2B

PYTHIA 8 AU2

HERWIG++ UE-EE-3

ATLAS, PLB 756 (2016)
New angle on previous data?

- Strong **centrality dependence** in forward hadron and di-hadron production in $d+Au$
 - even though $$ does not change so much
 - attributed by many to low nuclear-x effects (CGC?), but kinematic region also associated with large deuteron-x

- My two cents: there's an overall suppression, but most of the centrality “dependence” is from large x_d, not small x_{Au}
Jet suppression in Cu+Au

\[R_{AA} = \frac{dN/dp_T}{T_{AA} \times d\sigma/dp_T} \]

\(n_{p+p} \) overlap \(x\)-sect.

- Differential, centrality-dependent suppression of \(N_{\text{coll}} \)-scaled yield
 - \(\Rightarrow \text{peripheral events} \) just consistent with \(R_{AA} = 1 \)
 - \(\Rightarrow \) factor of 2 suppression in \textbf{central events}
- Interestingly, flat with \(p_T \)