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mainly based on

S. Floerchinger & M. Martinez: Fluid dynamic propagation of initial
baryon number perturbations on a Bjorken flow background
[Phys. Rev. C 92 (2015), 064906]

S. Floerchinger & U. A. Wiedemann: Kinetic freeze-out, particle spectra
and harmonic flow coefficients from mode-by-mode hydrodynamics
[Phys. Rev. C 89 (2014) 034914]



Baryon number & fluctuations

Total baryon number B − B̄ is conserved.

For 208Pb - 208Pb collisions B − B̄ = 416
Determines total integrated baryon number

Small compared to total number of baryons B + B̄ and other
produced particles at at RHIC or LHC energies.
⇒ Standard assumption:

µB = 0

What about local and event-by-event fluctuations?

Dynamics should be governed by universal fluid dynamics.
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Evolution of baryon number in fluid dynamics

Small perturbation in static medium with uµ = (1, 0, 0, 0)

∂

∂t
δn(t, ~x) = D~∇2δn(t, ~x)

Baryon number diffusion constant

D = κ

[
nT

ε+ p

]2(
∂(µ/T )

∂n

)
ε

Heat capacity κ appears here because

baryon diffusion
in Landau frame

=̂
heat conduction
in Eckart frame

Is D finite for n→ 0 ?
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Heat conductivity

Heat conductivity of QCD rather poorly understood theoretically so
far.

From perturbation theory [Danielewicz & Gyulassy, PRD 31, 53 (1985)]

κ ∼ T 4

µ2α2
s lnαs

(µ� T )

From AdS/CFT [Son & Starinets, JHEP 0603 (2006)]

κ = 8π2 T

µ2
η = 2π

sT

µ2
(µ� T )

Baryon diffusion constant D finite for µ→ 0 !
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Relativistic fluid dynamics

Evolution of baryon number density from conservation law

uµ∂µn+ n∇µuµ +∇µνµ = 0

Diffusion current να determined by heat conductivity κ

να = −κ
[
nT

ε+ p

]2

∆αβ∂β

(µ
T

)
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Bjorken expansion
Consider Bjorken type expansion

∂τ ε+ (ε+ p)
1

τ
−
(

4
3η + ζ

) 1

τ2
= 0

∂τn+ n
1

τ
= 0

Heat conductivity κ does not enter by symmetry argument

Compare ideal gas to lattice QCD equation of state
[Borsanyi et al., JHEP 08 (2012) 053]
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Perturbations around Bjorken expansion

Consider situation with 〈n(x)〉 = 〈µ(x)〉 = 0

Local event-by-event fluctuation δn 6= 0

Concentrate now on Bjorken flow profile for uµ

Consider perturbation δn

∂τδn+
1

τ
δn−D(τ)

(
∂2
x + ∂2

y +
1

τ2
∂2
η

)
δn = 0

Structures in transverse and rapidity directions are “flattened out”
by heat conductive dissipation
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Solution by Bessel-Fourier expansion
Expand perturbations like

δn(τ, r, φ, η) =

∫ ∞
0

dk k

∞∑
m=−∞

∫
dq

2π
δn(τ, k,m, q) ei(mφ+qη)Jm(kr)

Leads to ODE

∂τδn+
1

τ
δn+D(τ)

(
k2 +

q2

τ2

)
δn = 0.

For q = 0 and different k ≈ 1/fm, AdS/CFT value κ = 8π2 T
µ2 η
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Evolution of perturbations
For k = 0 and different q = 1, 3, 5, AdS/CFT value κ = 8π2 T

µ2 η
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Only long-range fluctuations survive diffusive damping.
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Initial baryon number fluctuation

Initial baryon number density fluctuations must be known to learn
about diffusive transport properties...

What can be said from first principles?

How are baryon number fluctuations generated by QCD processes?

What is the dynamics at very early times?

Maybe answers at this conference... ?
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Glauber type model

Fluctuations due to nucleon positions: used so far for energy density

ε(τ0,x, η) =

Npart∑
i=1

ε̂w(x− xi)

Can be generalized to baryon number fluctuations

n(τ0,x, η) =

Npart∑
i=1

n̂w(x− xi)

Would generate baryon number fluctuations on nucleon scale

More general origin of fluctuations is initial state physics and
early-time, non-equilibrium dynamics
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Baryon number fluctuations at freeze-out
On freeze-out surface

dNi
d3pd3x

= fi(p
µ;T, uµ, µ, πµν , πbulk, ν

µ)

Close-to-equilibrium expansion

fi = fi,eq + δfi

Equilibrium distribution functions

fi,eq =
1

e
−pνuν−µi

T ± 1

Baryons and anti-baryons have opposite baryon chemical potential

Non-equilibrium correction

δfi =pµpνπ
µν g̃i(pµu

µ, T, µi) + pµpν∆µν πbulk h̃i(pµu
µ, T, µi)

+ pµν
µ k̃i(pµu

µ, T, µi)
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Fluctuations at freeze-out

Background-perturbation splitting can also be used at freeze-out

Interesting observable is net baryon number

n(φ, η) = (B − B̄)(φ, η)

Correlation functions and distributions contain information about
baryon number fluctuations

Two-particle correlation function of baryons minus anti-baryons

CBaryon(φ1 − φ2, η1 − η2) = 〈n(φ1, η1)n(φ2, η2)〉c
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Baryon number correlation function

In Fourier representation

CBaryon(∆φ,∆η) =

∞∑
m=−∞

∫
dq

2π
C̃Baryon(m, q) e

im∆φ+iq∆η

heat conductivity leads to exponential suppression

C̃Baryon(m, q) = e−m
2I1−q2I2 C̃Baryon(m, q)

∣∣
κ=0

I1 and I2 can be approximated as

I1 ≈
∫ τf

τ0

dτ
2

R2
κ

[
nT

ε+ p

]2 (∂(µ/T )
∂n

)
ε

I2 ≈
∫ τf

τ0

dτ
2

τ2
κ

[
nT

ε+ p

]2 (∂(µ/T )
∂n

)
ε

I2 � I1 would lead to long-range correlations in rapidity direction
(”baryon number ridge”)
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Conclusions

Baryon number diffusion constant ∼ heat conductivity
is well defined transport property of the quark-gluon plasma for
µ→ 0

Baryon number fluctuations could allow to constrain it

Early time baryon diffusion should lead to long-range rapidity
correlations in net baryon number

More knowledge about initial state welcome

Seems to be interesting topic for further experimental and
theoretical studies
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