Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Particle Physics Department and IGFAE

Universidade de Santiago de Compostela

May 24th 2016
Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Outline

1. Experimental scaling of v_2 of charged particles
2. v_2-scaling of photons
3. v_2-scaling of pions and kaons
4. Energy loss
5. v_3-scaling of charged particles
6. Conclusions
The scaling law

\[\frac{v_2(p_T)}{\epsilon_1 Q_s^A L} = f(\tau) \]

\[\epsilon_1 = \frac{2}{\pi} \int_0^{\pi/2} d\varphi \cos 2\varphi \frac{R^2 - R_\varphi^2}{R^2} \]

\[\alpha = \arcsin \left(\frac{b}{2R_A} \sin \varphi \right) \]

\[R_\varphi = \frac{R_A \sin(\varphi - \alpha)}{\sin \varphi} \]

\[\alpha = R^2 = \langle R_\varphi^2 \rangle = \frac{2}{\pi} \int_0^{\pi/2} d\varphi R^2_\varphi \]

\[\tau = \frac{p_T^2}{(Q_s^A)^2} \]

\[L = \left(1 + N_A^{1/3} \right)/2 \]
Saturation momentum

\[\tau = \frac{p_T^2}{(Q_s^A)^2} \]

\[(Q_s^A)^2 = (Q_s^p)^2 A^{\alpha(s)/2} N_A^{1/6} \]

\[\alpha(s) = \frac{1}{3} \left(1 - \frac{1}{1 + \ln \left(\frac{\sqrt{s}}{\sqrt{s_0}} + 1 \right)} \right) \]

\[(Q_s^p)^2 = Q_0^2 \left(\frac{W}{p_T} \right)^\lambda \]

with \(Q_0 = 1 \) GeV, \(W = \sqrt{s} \times 10^{-3} \), \(\sqrt{s_0} = 245 \) GeV and \(\lambda = 0.27 \).
Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles

v_2-scaling of photons

v_2-scaling of pions and kaons

Energy loss

v_3-scaling of charged particles

Conclusions

Multiplicity spectra
v$_2$-scaling of charged particles

Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles

v_2-scaling of photons

v_2-scaling of pions and kaons

Energy loss

v_3-scaling of charged particles

Conclusions
Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles

v_2-scaling of photons

v_2-scaling of pions and kaons

Energy loss

v_3-scaling of charged particles

Conclusions

v_2-scaling of photons
ν_2-scaling of pions and kaons

![Graph showing ν_2-scaling of pions and kaons]
If there are domains or clusters of strings which decay in partons, these partons interact with the color field of other clusters or domains, losing energy or momentum in their path to get out the area of the collision.

In QED, the loss of energy of a charged particle moving in an external E.M. field is known. It has been shown, on the basis of ADS/CFT, that in N=4 SUSY with Nc large the same result is obtained.
Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles
v_2-scaling of photons
v_2-scaling of pions and kaons
Energy loss
v_3-scaling of charged particles
Conclusions

Energy loss

\[P(p, \phi) = C e^{-\frac{p_0}{\sqrt{\tau/2}}} \]
\[\tilde{\tau}^2 = \tau/2 \]

\[p_0(p, \ell) = p \left(1 + \kappa p^{-1/3} \tilde{\tau}^{2/3} \ell \right) \]

\[P(p, \theta) = C e^{-\frac{p}{\tilde{\tau}}} e^{-\frac{p^{2/3} \tilde{\tau}^{1/3} \ell}{\cos(\theta - \theta_0)}} \]

\[v_n \propto p^{2/3} \tilde{\tau}^{1/3} \ell \]
\[\tilde{\tau} \sim Q_s \]

\[\frac{v_n}{\ell Q_s} = \frac{p^{2/3} Q_s^{1/3} \ell}{\ell Q_s} = \left(\frac{p^2}{Q_s^2} \right)^{1/3} \]

\[f(\tau) = \tau^{1/3} \]
Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles

v_2-scaling of photons

v_2-scaling of pions and kaons

Energy loss

v_3-scaling of charged particles

Conclusions
The interaction of the produced parton with the rest gives rise to the scaling of V_n.

They are responsible of the p-p, p-A and A-A ridge structures.

Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles

v_2-scaling of photons

v_2-scaling of pions and kaons

Energy loss

v_3-scaling of charged particles

Conclusions

Figure 10: Correlation coefficient $C(\phi)$ for p-Pb collisions at 5.02 TeV for central collisions compared to the data in [3] (with the ZYAM procedure).
Universal scaling of the azimuthal anisotropies due to energy loss

Carlos Pajares

Experimental scaling of v_2 of charged particles

v_2-scaling of photons

v_2-scaling of pions and kaons

Energy loss

v_3-scaling of charged particles

Conclusions

Figure 15: Correlation coefficient $C(\phi)$ for pp collisions at 7 TeV with triple multiplicity compared to the experimental data from [1]
(with the ZYAM procedure at positive ϕ)
Conclusions

- A **universal scaling law of the elliptic flow** of charged particles, photons, pions, kaons and protons in A-A collisions at all centralities and energies is found.

- Universal **v_3-scaling** of charged particles is also obtained.

- The scaling law for v_2 is naturally explained by the interaction of produced partons with the existing color field.

- The same explanation applies for the **ridge structures** in p-p, p-A and A-A collisions.

- Energy loss **cannot** explain the scaling of v_3.