Heavy-flavour production in small systems with ALICE

Elena Bruna (INFN-GSI/EMMI)
for the ALICE Collaboration

3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions (InitialStages2016)
Outline

- Physics motivations
- The ALICE experiment

Results
- Heavy-flavour cross section in pp and p-Pb collisions
 - Down to $p_T=0$
 New on arXiv:1605.07569
- Multiplicity dependence of heavy-flavour production in pp and p-Pb collisions
 New on arXiv:1602.07240
- Azimuthal correlations of D mesons with charged particles in pp and p-Pb collisions
 New on arXiv:1605.06963

Conclusions
Heavy quarks are produced in initial high-Q^2 scattering processes.

Production calculable with pQCD.

Heavy-flavour (HF) results described by pQCD at LHC energies.

pP system is the reference for p-Pb and Pb-Pb collisions.

p-Pb collisions provide the control experiment to study Cold Nuclear Matter (CNM) effects.

More differential measurements provide more insight into heavy-flavour (HF) production mechanisms in small systems.
HF production in pp collisions at LHC

- Several hard partonic interactions can occur
- In events with multi-parton interactions (MPIs) higher charged-particle multiplicity expected

In addition:
- Role of the collision geometry
- Final-state effects
- Collectivity at high multiplicities?

→ Effects of MPIs and geometry/final-state/collectivity on the heavy-flavour sector in pp collisions?
→ Can we assess charm fragmentation and jet properties?

More differential HF observables:
- Multiplicity dependence of HF production in pp collisions
- Angular correlations of D mesons with charged particles in pp collisions

Bartalini, Fano, arXiv:1003.4220
Frankfurt, Strikman, Weiss, PRD 83 (2011) 054012
Azarkin, Dremin, Strikman, PLB 735 (2014) 244
Ferreiro, Pajares, PRC 86 (2012) 034903
Werner et al., PRC 83 (2011) 044915
E. Bruna (INFN)
Additional effects in p-Pb collisions

In presence of a nucleus (p-Pb collisions):

• Multiple nucleon-nucleon collisions
• Nuclear PDFs, saturation effects
• Initial-state k_T broadening
• Initial/final-state energy loss

→ Collective-like effects observed for light quarks. Same mechanisms (CGC/hydro) for light and heavy flavours?

→ Do CNM effects influence HF production depending on collision geometry and/or multiplicity density?

→ Can we assess possible effects of charm fragmentation/jet properties in the presence of the nucleus?

More differential HF observables also in p-Pb collisions

Multiplicity dependence
Angular correlations
TPC → tracking, PID via dE/dx, |η|<0.9

ZDC (112.5 from interaction point) → centrality

TOF → PID w/ Time Of Flight, |η|<0.9

ITS → vertexing, tracking, |η|<0.9

V0 → trigger and multiplicity

Forward Muon Spectrometer
ITS → vertexing, tracking, $|\eta|<0.9$

TPC → tracking, PID via dE/dx, $|\eta|<0.9$

TOF → PID w/ Time Of Flight, $|\eta|<0.9$

ZDC (112.5 from interaction point) → centrality

V0 → trigger and multiplicity

SPD

pp collisions at $\sqrt{s}=7$ TeV

$\sim 3 \times 10^8$ events collected in 2010

Min. Bias trigger: V0 and SPD

p-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV

$\sim 10^8$ events collected in 2013

Min. Bias trigger: V0

$E_p=4$ TeV, $E_{pd}=(208)\times 1.58$ TeV, $\sqrt{s_{NN}}=5.02$ TeV

$\Delta y_{\text{cms}}=0.465$ (in proton direction)
Heavy flavours with ALICE

Full reconstruction of D-meson hadronic decays (prompt D mesons)

\[
\begin{align*}
D^0 & \rightarrow K^-\pi^+ \\
D^+ & \rightarrow K^-\pi^+\pi^+ \\
D^{*+} & \rightarrow D^0\pi^+ \\
D_s^+ & \rightarrow \phi\pi^+ \rightarrow K^-K^+\pi^+
\end{align*}
\]

Invariant mass analysis based on displaced secondary vertices, selected with topological cuts and PID

Correction for beauty feed-down (based on FONLL) to extract results for prompt D mesons

Semi-leptonic decays (charm, beauty)

- Electrons: mid-rapidity
- Muons: forward rapidity

Electrons: background (\(\pi^0\) and \(\eta\), Dalitz decays, photon conversions) subtracted with Invariant mass method (e+e-) and cocktail

Muons: background (\(\pi, K \rightarrow \mu\)) subtracted with MC (pp) and data-tuned MC cocktail (p-Pb, Pb-Pb)

Displaced electrons, \(J/\psi\) (from B decays)

Separation of prompt and non-prompt \(J/\psi\) using the pseudo-proper decay length

Beauty-decay electrons: Exploit displaced track impact parameter
Cross sections in pp and p-Pb collisions
Heavy-flavour cross sections in pp collisions

Cross sections described by FONLL, GM-VFNS, k_T factorization pQCD calculations
Low p_T semi-leptonic cross section in good agreement with ATLAS at high p_T
D⁰ cross section in pp collisions - down to \(p_T = 0 \)

arXiv:1605.07569

\[0 < p_T(D^0) < 1 \text{ GeV}/c \]

No secondary vertex reconstruction

Combinatorial background subtraction via:

- event mixing, like sign, track rotation, side-band fit
D⁰ cross section in pp collisions - down to pₜ=0

Good agreement with the measurement at higher pₜ based on secondary vertex topology

arXiv:1605.07569

pp collisions at √s = 7 TeV:

dσ_{pp,7 TeV}^{\text{prompt D⁰}}/dy = 518 ± 43 (stat.) ± 57 (syst.) ± 18 (lumi.) ± 7 (BR) µb

→ updated total charm cross section with reduced uncertainty
D⁰ cross section in p-Pb collisions - down to p_T=0

Measurement of inclusive (no B feed-down subtraction) and prompt D⁰ meson cross section

p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV:

\[
\frac{d\sigma^{\text{prompt}D^0}_{p-Pb,5.02\text{TeV}}}{dy} = 79.0 \pm 7.3 \text{ (stat.)} \pm 7.1 \text{ (syst.)} \pm 2.9 \text{ (lumi.)} \pm 1.0 \text{ (BR)} \text{ mb}
\]
Nuclear modification factor in p-Pb collisions

\[R_{pPb} = \frac{(d\sigma/dp_T)_{pPb}}{A \times (d\sigma/dp_T)_{pp}} \]

Results shown as a function of \(p_T \) and \(y \)
Data described within uncertainties by models with:

- initial-state effects
- final-state effects due to the presence of hot nuclear medium (high-\(p_T\) suppression, radial flow bump at intermediate \(p_T\))

Data disfavour suppression larger than 15% at high \(p_T\)

\[R_{ppb}^{D^0, p_T=0} (p_T > 0, -0.96 < y_{cms} < 0.04) = 0.89 \pm 0.11 \text{(stat.)}^{+0.13}_{-0.18} \text{(syst.)} \]
HF R_{pPb} at different rapidities

\[R_{pPb} = \frac{(d\sigma/dp_T)_{pPb}}{A \times (d\sigma/dp_T)_{pp}} \]

-4.46 < y_{CMS} < -2.96
10^{-2} < x < 5 \cdot 10^{-2}
c, b \rightarrow \mu

c, b \rightarrow e
2.03 < y_{CMS} < 3.53
10^{-5} < x < 8 \cdot 10^{-5}
c, b \rightarrow \mu

Different x regimes explored in different rapidity ranges with HF probes
→shadowing/saturation relevant at low p_T at the LHC

Data described within uncertainties by the models with CNM effects
Multiplicity dependence of HF production in pp and p-Pb collisions
Centrality/multiplicity estimators in pp and p-Pb collisions

- **Centrality estimators in p-Pb collisions**
 - CL1 (clusters in outer SPD layer)
 - V0A (Pb-going) amplitude
 - ZNA (Pb-going): \(<N_{part}\) in ZN energy class from scaling the min. bias value assuming scaling with multiplicity at mid-rapidity.

- **Multiplicity estimators in pp and p-Pb collisions**
 - Number of track segments (or tracklets) of the SPD
 - Sum of amplitudes in the V0 scintillator arrays (V0A only for p-Pb)
D-meson production in different p-Pb centrality classes

With ZN estimator: free from biases due to event selection (multiplicity fluctuations/jet-veto).

No multiplicity dependent modification of D-meson production relative to pp collisions within uncertainties. **Consistent with binary collision scaling of the yield in pp collisions.**

\[Q_{pPb}^{\text{mult}}(p_T) = \frac{dN_{pPb}^{\text{mult}}/dp_T}{N_{\text{coll}}^{\text{mult}}dN_{pp}/dp_T} \]
Increase of D-meson yields with charged-particle multiplicity at mid rapidity:

- slightly faster-than-linear increase at large multiplicities,
- independent of p_T within uncertainties.
Per-event yields vs. N_{ch} in p-Pb collisions

- Introducing an η gap -

Nearly linear increase with multiplicity at backward rapidity (Pb-going direction).

Results consistent within uncertainties when an η gap is introduced between the regions where the D mesons and the multiplicity are measured.
Per-event yields vs. N_{ch} in pp collisions

Increase of D-meson yields with charged-particle multiplicity at mid rapidity:

- faster-than-linear increase at large multiplicities
- independent of p_T within uncertainties
Per-event yields vs. N_{ch} in pp collisions

- Introducing an η gap -

Qualitatively similar increasing trend of D-meson yields when an η gap is introduced between the regions where the D mesons and the multiplicity are measured.
Comparison of pp and p-Pb results

Multiplicity at mid-rapidity: similar trend for in pp and p-Pb collisions

Multiplicity at large (backward) rapidities:

- measured in different η ranges in pp and p-Pb collisions
- faster increase of D-meson yields in pp than in p-Pb collisions

Possible effects due to MPI in high-multiplicity pp collisions

p-Pb: multiple (and softer) nucleon-nucleon collisions also contribute

arXiv:1602.07240
Per-event yields: comparison with models in pp collisions

Percolation:
- interactions driven by the *exchange of colour sources* (strings ~ MPI scenario)

EPOS 3 (event generator):
- Flux-tube initial conditions
- Hydrodynamical evolution

PYTHIA 8:
- SoftQCD process selection
- including colour reconnection
- MPI

Results qualitative described by models including MPIs

Comparison with models in p-Pb collisions

EPOS 3 with initial conditions and hydrodynamic evolution

- faster-than-linear increase of D-meson yields with multiplicity at mid rapidity
- approximately linear trend with multiplicity at backward rapidity (reduced influence of hydro on charged-particle production at backward rapidity)

arXiv:1602.07240
Azimuthal correlations of D mesons with charged particles in pp and p-Pb collisions
D meson-charged particle azimuthal correlations

D-meson trigger p_T

- **3-5 GeV/c**
- **5-8 GeV/c**
- **8-16 GeV/c**

Average D^0, D^+, D^+ ALICE

- $3 < p_T < 5$ GeV/c, $p_T^{assoc} > 0.3$ GeV/c
- $|y^{meas}| < 0.5, |\eta| < 1$
- pp, $\sqrt{s} = 7$ TeV

Simulations, pp, $\sqrt{s} = 7$ TeV

- **PYTHIA6, Perugia 0**
- **PYTHIA6, Perugia 2010**
- **PYTHIA6, Perugia 2011**

Baseline-subtraction uncertainty

- $\pm 0.1\%$ scale uncertainty

In pp collisions:

- Address charm fragmentation
- Reference for comparison with Pb-Pb and p-Pb collisions

Compatible within uncertainties with expectations from different MC generators and tunes (PYTHIA6, PYTHIA8, POWHEG+PYTHIA) after baseline subtraction

Near side:

- D meson trigger

Away side:

- Associate hadron

E. Bruna (INFN)
Comparison to p-Pb collisions

D-meson trigger p_T:

- **5-8 GeV/c**
 - Average D^0, D^+, D^+
 - ALICE
 - pp, $\sqrt{s} = 7$ TeV, $|y_{D^{0}}| < 0.5$
 - p-Pb, $\sqrt{s_{NN}} = 5.02$ TeV, $-0.96 < y_{D^{0}} < 0.04$
 - $5 < p_T^D < 8$ GeV/c, $p_T^{assoc} > 0.3$ GeV/c
 - $|\Delta\eta| < 1$
 - $\pm 13\%$ scale uncertainty (pp)
 - $\pm 10\%$ scale uncertainty (p-Pb)

- **8-16 GeV/c**
 - $8 < p_T^D < 16$ GeV/c, $p_T^{assoc} > 0.3$ GeV/c
 - Baseline-subtraction uncertainty (pp)
 - Baseline-subtraction uncertainty (p-Pb)

Near side: D-meson trigger

Away side associate hadron

In p-Pb collisions:

- Are heavy-flavour jet properties affected by nuclear effects due to the Pb nucleus?

Compatibility within uncertainties between pp collisions at $\sqrt{s} = 7$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV after baseline subtraction
Near-side yields and widths in p-Pb collisions

Near-side yield

Near-side width

Near-side yields and widths compatible in data and simulations within uncertainties
Conclusions

Cross sections in pp collisions for D mesons and leptons from heavy-flavour decays described by pQCD, down to \(p_T=0 \) (D\(^0 \))

- heavy flavours as test for pQCD at LHC energies

\(R_{ppb} \) compatible with unity within uncertainties, down to \(p_T=0 \) (D\(^0 \))

- described by different models of initial-/final-state effects,
- no centrality dependence

Relative D-meson yields increase with charged-particle multiplicity in pp and p-Pb collisions

- Models including multiple-parton interactions reproduce pp results.
- In p-Pb collisions, also contributions from multiple nucleon-nucleon collisions

D-charged particle correlations in pp and p-Pb collisions:

- Near-side structure in good agreement with Monte Carlo generators

Outlook: larger data samples in Run 2, higher \(\sqrt{s} \), higher multiplicities: access to physics-rich program down to \(p_T=0 \), angular correlations in high-multiplicity events
Extra slides
(Some) measured effects on the hard scale

In pp collisions:
- **NA27** (pp collisions at $\sqrt{s} = 28$ GeV): NA27 Coll. Z.Phys.C41:191
 Events with charm have larger charged particle multiplicity
 Studies on jets and underlying event are better agreement with models including MPI
- **LHCb** (pp collisions at $\sqrt{s} = 7$ TeV): J. High Energy Phys., 06 (2012) 141
 Double charm production agrees better with models including double parton scattering
 Approximately linear increase of J/ψ yield as a function of multiplicity

And in pA collisions:
- **PHENIX** (d+Au at 200 GeV)
 CNM effects observed from e-μ correlations
- **ALICE** (p-Pb collisions at 5 TeV)
 Collective effects for high-p_T muons in high-multiplicity events via μ-h correlations

E. Bruna (INFN)
Data-driven feed-down subtraction

\[D^0 \rightarrow K\pi^+ \quad 3 < p_T < 4 \text{ GeV/c} \]

\[f_{\text{prompt}} = 0.87 \pm 0.05 \]

\[p_{\text{Pb}}, \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \]

ALICE

\[D^0 \rightarrow K\pi^+ \]

Entries vs. Impact parameter (µm)

\[0 \leq \rho < 500 \mu m \]

Entries vs. \(\rho_T \) (GeV/c)

\[f_{\text{prompt}} \]

Entries vs. Impact parameter (µm)

\[5 < \rho_T < 6 \text{ GeV/c} \]

Entries vs. \(\rho_T \) (GeV/c)

\[f_{\text{prompt}} = 0.89 \pm 0.05 \]

Entries vs. Impact parameter (µm)

\[6 < \rho_T < 8 \text{ GeV/c} \]

Entries vs. \(\rho_T \) (GeV/c)

\[f_{\text{prompt}} = 0.92 \pm 0.05 \]

Entries vs. Impact parameter (µm)

\[0 \leq \rho < 500 \mu m \]

Entries vs. \(\rho_T \) (GeV/c)

\[f_{\text{prompt}} \]

Entries vs. Impact parameter (µm)

\[5 < \rho_T < 6 \text{ GeV/c} \]

Entries vs. \(\rho_T \) (GeV/c)

\[f_{\text{prompt}} = 0.87 \pm 0.05 \]

Entries vs. Impact parameter (µm)

\[6 < \rho_T < 8 \text{ GeV/c} \]

Entries vs. \(\rho_T \) (GeV/c)

\[f_{\text{prompt}} = 0.92 \pm 0.05 \]
Low-p_T D^0

arXiv:1605.07569

$D^0 \rightarrow K\pi^+$

$\sqrt{s}_{NN} = 5.02$ TeV

Prompt D^0
- with vertexing
- w/o vertexing

$\pm 3.5\%$ lumi, $\pm 1.3\%$ BR uncertainty not shown

ALICE, pp, $|y|<0.5$

ALICE = 5.02 TeV

ALICE, $p-Pb$

$\pm 3.5\%$ lumi, $\pm 1.3\%$ BR uncertainty not shown

ALICE = 5.02 TeV

Data

FONLL

GM-VFNS

LO_k_f fact

FONLL
Centrality estimation in p-Pb collisions

CL1 (clusters in outer SPD layer): $<N_{\text{coll}}>$ from Glauber fit to cluster distribution

V0A: $<N_{\text{coll}}>$ from Glauber fit to V0A amplitude

ZNA: $<N_{\text{part}}>$ in ZN energy class from scaling the min. bias value assuming scaling with multiplicity at mid-rapidity.

Q_{pPb} in p-Pb collisions

\[
Q_{pPb}^{\text{mult}}(p_T) = \frac{dN_{\text{mult}}^{pPb}/dp_T}{N_{\text{coll}}^\text{dNNPp/dp_T}}
\]

Average D^0, D^+, D^{} Q_{pPb}** shows:
- ordering from low to high multiplicity when evaluated with CL1 (bias on multiplicity fluctuation/jets)
- a residual bias when computed using the V0A estimator (a rapidity gap)
- that is reduced when using ZN one.

With ZN estimator: **no multiplicity dependent modification** of D meson production relative to pp collisions within uncertainties.

Consistent with binary collision scaling of the yield in pp collisions.
Average D meson Q_{pPb} shows a similar trend as a function of centrality with the three estimators at low and high p_T.

At high p_T, the trend is similar to that of charged hadrons (expected to scale with N_{coll} only at high p_T).
Multiplicity estimation

Multiplicity estimators:

- number of track segments (or tracklets) of the **Silicon Pixel Detector** (2 innermost layers of the *Inner Tracking System*).

- sum of amplitudes in the **V0** scintillator arrays

SPD layers of radii of 3.9 cm (1 cm from beam vacuum tube) and 7.6 cm. Formed by 9.8×10^6 pixels of size $50(r\phi) \times 425(z) \ \mu m^2$, with intrinsic spatial resolution of $12(r\phi) \times 100(z) \ \mu m^2$.

V0 scintillator arrays at $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$

- $N_{\text{tracklets}} \propto dN_{\text{ch}} / d\eta$

- $\langle dN_{\text{ch}} / d\eta \rangle = 6.01 \pm 0.01 \text{(stat.)} +0.20^{+0.12}_{-0.12} \text{(syst.)}$ for $|\eta| < 1.0$ in pp collisions at 7 TeV

Open-charm production vs multiplicity

D-meson yield in multiplicity intervals (pp and p-Pb)

Multiplicity estimator: N tracklets = n. track segments reconstructed in SPD ($|\eta|<1$)

$$\frac{d^2N^D}{dyd\eta_T} = \frac{\frac{Y^{\text{mult}}}{\epsilon^{\text{mult}} \times N_{\text{event}}^{\text{mult}}}}{\frac{Y^{\text{tot}}}{\epsilon^{\text{tot}} \times N_{\text{event}}^{\text{tot}} / \epsilon_{\text{trigger}}}}$$

D yield/event integrated in multiplicity, corrected for reconstruction and trigger efficiencies

Example: D$^+$ meson

pp $\sqrt{s}=7$ TeV
Comparison of open vs hidden heavy flavours

- Heavy-flavour yields increase with charged-particle multiplicity at mid rapidity;
 - similar trend in pp collisions,
 - in p-Pb collisions, D mesons increase faster than J/ψ.

In particular for J/ψ yields measured at forward rapidity (p-going direction).

Note: J/ψ yields measured in the p-going direction probe low-\(x\) gluons.

Error bars: statistical uncertainty.
Vertical size of boxes: systematic uncertainties but feed-down.
Bottom panels lines: relative feed-down systematic uncertainties.
Not shown: systematic uncertainty on \((dN/d\eta)/\langle dN/d\eta \rangle\). and normalisation.
Comparison of open and hidden heavy flavours in pp collisions

- Similar increase of open charm, open beauty and charmonia yields as a function of charged-particle multiplicity at mid rapidity.
- Caveats: different rapidity and p_T interval of the measurements.
- Likely related to heavy-flavour production processes, and not significantly influenced by hadronisation.

E. Bruna (INFN)
Quarkonia vs. multiplicity

- Increase of J/ψ yields as a function of multiplicity at mid rapidity.
- Similar increase of J/ψ yields measured at central and forward rapidity.
- The fraction of non-prompt J/ψ in the inclusive yields shows no multiplicity dependence with multiplicity within uncertainties.

Error bars: statistical uncertainty.

Horizontal size of boxes: systematic uncertainty on $(dN/d\eta)/\langle dN/d\eta \rangle$.
Vertical size of boxes: systematic uncertainties but feed-down.
Not shown: normalisation systematic uncertainty.

E. Bruna (INFN)
Quarkonia in pp and p-Pb collisions

- **Multiplicity at mid rapidity:**
 - similar trend for J/ψ yields measured in pp and p-Pb collisions at backward rapidity (Pb-going direction),
 - deviation of J/ψ yields measured at forward rapidity (p-going direction).

Note: J/ψ yields measured in the p-going direction probe low-x gluons.
J/ψ in pp collisions vs. percolation model

- **Percolation:**
 - interactions driven by the **exchange of colour sources** (strings ~ MPI scenario);
 - the strings **have a finite spatial extension and can interact**,
 - at high density the coherence leads to a reduction of their number, i.e. a reduction of charged-particle multiplicity,
 - heavy-flavours are less affected due to the smaller transverse size of hard sources;
 - **faster-than-linear increase of J/ψ yield with multiplicity**

E. Bruna (INFN)

Non-prompt J/ψ in pp collisions vs. models

- **PYTHIA 8:**
 - SoftQCD process selection,
 - including colour reconnection,
 - as well as MPI,
 - and diffractive processes

✿ nearly linear trend of B-hadron yield with multiplicity.
More details on PYTHIA 8

- Calculation: SoftQCD process selection, including colour reconnection and diffractive processes.

- Contributions of:
 - **first hard process** ∝ hardest process
 - weak dependence on multiplicity (slight increase at low multiplicities followed by a saturation)
 - **MPI** ∝ subsequent hard process
 - increasing trend vs. multiplicity
 - **gluon splitting from hard process**
 - increasing trend vs. multiplicity
 - **initial and final-state radiation**
 - increasing trend vs. multiplicity

Comparison to p-Pb collisions

D-meson trigger p_T:

- Near side:
 - Heavy-flavour jet properties affected by nuclear effects due to the Pb nucleus?

- Away side:
 - Associate hadron

In p-Pb collisions:

- Are heavy-flavour jet properties affected by nuclear effects due to the Pb nucleus?

Compatibility within uncertainties between pp collisions at $\sqrt{s} = 7$ TeV and p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV after baseline subtraction

arXiv:1605.06963
Correlations in pp and p-Pb collisions

Average D^0, D^+, D^+ ALICE

- pp, $\sqrt{s} = 7$ TeV, $|y_{\text{cms}}^p| < 0.5$
- p-Pb, $\sqrt{s_{\text{NN}}} = 5.02$ TeV, $-0.96 < y_{\text{cms}}^D < 0.04$

$|\Delta\eta| < 1$

- $3 < p_T^D < 5$ GeV/c
- $p_T^{\text{assoc}} > 0.3$ GeV/c

Scale uncertainty (pp) $\pm 13\%$

- $5 < p_T^D < 8$ GeV/c
- $p_T^{\text{assoc}} > 0.3$ GeV/c

Scale uncertainty (p-Pb) $\pm 14\%$

- $8 < p_T^D < 16$ GeV/c
- $p_T^{\text{assoc}} > 0.3$ GeV/c

Scale uncertainty (p-Pb) $\pm 14\%$

$|\Delta\phi| < 1$

- $3 < p_T^D < 5$ GeV/c
- $0.3 < p_T^{\text{assoc}} < 1$ GeV/c

Scale uncertainty (pp) $\pm 13\%$

- $5 < p_T^D < 8$ GeV/c
- $0.3 < p_T^{\text{assoc}} < 1$ GeV/c

Scale uncertainty (p-Pb) $\pm 10\%$

- $8 < p_T^D < 16$ GeV/c
- $0.3 < p_T^{\text{assoc}} < 1$ GeV/c

Scale uncertainty (p-Pb) $\pm 10\%$
Near-side yields and widths in pp and p-Pb collisions

0.3 < p^assoc_T < 1 GeV/c, $|\Delta \eta| < 1$
- pp, $\sqrt{s} = 7$ TeV, $|y^D_{\text{cms}}| < 0.5$
- p-Pb, $\sqrt{s_{\text{NN}}} = 5.02$ TeV, -0.96 < y^D_{cms} < 0.04

<7% variation expected from different energy and rapidity (Pythia, Perugia 2011)
Near-side yields and widths in pp collisions

(arXiv:1605.06963)

Graphs showing associated yield, σ_{NS}, baseline, and D meson p_T distributions for different conditions and simulations.