Multi-Parton and Multi-Nucleon Correlations: Experiment

Andreas Morsch CERN

3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions (InitialStages2016)

Lisbon, 27 May 2016

Multi-Parton/Multi-Nucleon Correlations ?

- op, pA, AA: collisions of beams of confined partons
 - most of the experimental results are related to Multi-Parton or Multi-Nucleon interaction and their correlations ...

Challenging subject for a 20 min talk ...

... and the most spectecular results have been already discussed

Focus of this Talk

- Measurements interpreted in the framework of MPI that provide information about
 - orrelation between hard and soft particle production
 - the initial state of small systems (pp, p(d)A)
 - final state correlations that might help to understand the origin of collectivity in small systems
 - Emphasis is on experimental challenges rather than an exhaustive catalogue of experimental results

Importance of MPI in pp (at LHC)

At LHC multiple hard scatterings at perturbative scales

What do we know about the contribution to "bulk (low- p_T) particle" production ? (event activity = proxy for MPI)

MPI and Charged Particle Multiplicity

• Particle yield from MPI $\propto \sigma_{hard}/\sigma_{soft}$ steeply rising with \sqrt{s}

- additional factors $\propto A^{1/3}$ (pA), $\propto A^{4/3}$ (AA)
- Dominance of particle production at LHC ?
 - $dN_{ch}/d\eta$ does not follow this trend
 - hard cross-section must be damped at low $p_{\rm T}$
 - additional soft processes are important

What about jet like correlations ?

Topological Identification of MPI

"mini-jets" contribution to low-p_T "bulk" particle production

- Multiplicity dependence sensitive to relative contribution of hard-soft processes
- should be the Achilles heel of MPI based models

Quite well described by some of the MC tunes.

Two additional MPI model ingredients

Factorisation with Poisson Fluctuations not enough

- Impact parameter dependence (needs proton density function)
- Coherence effects between MPIs
 - Color Reconnections (Pythia, Herwig, …)
 - Collective Hadronization (EPOS)
 - Rope Hadronisation (DIPSY)

Sensitivity to Impact Parameter Dependence: Charged Particle Multiplicity Distributions

Shape of multiplicity distribution sensitive to impact parameter dependence

Jet Pedestal (Underlying Event)

Hallmark of MPI based models:

High p_T objects bias towards smaller *b* where probability for additional interactions is larger increased UE activity.

Clear discriminating power between different models (tunes)

- However, to which extent can we constrain individual mode components:
 - exact impact parameter dependence of hard/soft scattering ?
 - modelling of soft processes ?
 - confidence intervals for the parameters ?
- In principle proton density function could be x-dependent
 - Which measurement would be sensitive to this ?

$$\rho(r,x) \propto \frac{1}{a^3(x)} \exp\left(-\frac{r^2}{a^2(x)}\right)$$
$$a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x}\right)$$

Probing Coherence Effects

N_{ch} dependent measurements inform

- to which extend high-multiplicity events can be understood as incoherent superposition of elementary collisions
- as such sensitive to coherence effects

Probing Coherence Effects

Two component model Ledge Effect: rise – plateau – rise **1st rise:** increased dominance of hard over soft interactions **2nd rise:** jet bias (jets contribute to soft particle production ~ In *E*_{jet})

Pythia: Color Reconnections

Pythia: Interplay between hard and soft not enough to describe rise

EPOS: Collective Hadronization

7 TeV

900 GeV

100

 N_{chrg}

What's Next ?

Quite unsatisfactory that we cannot get separate effects related to

- interplay of hard and soft particle production processes
- jet biases
- ollective / coherence effects
- New observables ?
- Absence of multiplicity dependence of v₂ (ATLAS) should be contrasted with multiplicity dependence of other observables

Ledge Effect Re-visited

Multiplicity measured in: $|\eta| < 0.9$

 $2.8 < \eta < 4.1 \cup -3.7 < \eta < -1.7$

- Scaling at high *p*_T, reminiscent of *R*_{pA}
 Informs about *N*_{MPI}
- Spectra measured at mid-rapidity,
- hardness multiplicity dependent

Some kind of centrality measure"

Rapidity Separated Measurements

forward event activity

central event activity

New Ideas

Measurements as a function of the UE activity for fixed jet p_T range

P. Skands, arXiv:1603.0529

Measurements as a function of event shape (transverse spherocity)

E Cautl, A Ortiz, G Paic, Nucl. Phys. A941, 78-86 (2015) Poster, G Paic

$$S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_{\mathrm{T}_i} \times \hat{\mathbf{n}}|}{\sum_i p_{\mathrm{T}_i}} \right)^2$$

 $S_0 = \begin{cases} 0 & \text{``pencil-like'' limit (hard events)} \\ 1 & \text{``isotropic'' limit (soft events)} \end{cases}$

pA: Bias on hard processes from soft-hard correlations

Phys. Rev. C 91, 064905 (2015)

- Study of soft-hard correlations and MPI in pp has lead to a better understanding of centrality determination (*N*_{coll}) in pA
- Deviation from N_{coll} scaling if bias on hard processes in binary N-N collisions is not taken into account.

pA: Bias on hard processes from soft-hard correlations MC Data driven

Slicing of Multiplicity in $2.8 < \eta < 5.1$

Low-p_T jet-like correlations in p-Pb

- Corrected for contribution from v_2
- Do collective effects modify di-hadron correlations ?
- With forward event activity estimators di-hadron correlations level out at high multiplic
 - Despite strong collective effects
 - Can this discriminate models ?

Correlations between MPIs in the Initial State

 Complete incoherent superposition of MPI relies also on naive pdf factorisation beyond standard QCD factorisation:

$$\frac{\mathrm{d}\sigma^{AA\to X}}{\mathrm{d}p_T} \propto \sum_{n=1}^{N_{\mathrm{MPI}}} f_i(x_i^n, Q_n^2) \circ f_j(x_j^n, Q_n^2) \circ \sigma^{ii\to k}(x_i^n, x_j^n, p_T / z, Q_n^2) \circ D_{k\to X}(z, Q_n^2)$$

- Draw partons many times from the same *pdf*
- Must be trivially broken at some level due to energy conservation
 - Taken into account by MC
- Non-trivial correlations between partons
 - in particular between x of the hardest scattering parton and the proton size

DV Perepelitsa, Tue Parallel Session N Armesto et al., arXiv:1502.02986

x_{proj} Dependence of Jet Production

- Common "initial state" proton-x effect at RHIC and the LHC?
- Minimum Bias Unmodified
 - Centrality Bias ?

Can effect be understood as superposition of N-N collisions ?

Physics Letters B 756 (2016) 10-28

Control measurement: Forward summed E_T vs projectile (target) x

- Contrary to pPb, weak dependence on x_{proj}
- Effect in pPb not explained by N-N superposition.
- This is qualitatively expected if kinematic constraints on the proton pdf are responsible for the effect (more scatterings in pPb)

N_{ch} Centrality Dependence in AA

- S-shape reflects hard+soft scaling (f N_{part} + (1-f) N_{coll})
- But shape almost energy independent.
 - Strong \sqrt{s} dependence of the hard component expected

Charged particle density depends only on geometry.

Questions (instead of summary)

- How to move from MC tuning to extraction of physical parameters for the transverse structure of hadrons (including errors) ?
- Can one constrain generalised *pdf* (g(x,b)) and multiparton *pdf s*
- How does re-scattering modify (de-correlate) low-p_T jetlike correlations ?
- Can "elementary" string interactions explain collective bahavior in small systems ?