Multi-Parton and Multi-Nucleon Correlations: Experiment

Andreas Morsch
CERN

3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions (InitialStages2016)

Lisbon, 27 May 2016
Multi-Parton/Multi-Nucleon Correlations?

- pp, pA, AA: collisions of beams of confined partons

- most of the experimental results are related to Multi-Parton or Multi-Nucleon interaction and their correlations …

Challenging subject for a 20 min talk …

… and the most spectacular results have been already discussed
Focus of this Talk

- Measurements interpreted in the framework of MPI that provide information about
 - correlation between hard and soft particle production
 - the initial state of small systems (pp, p(d)A)
 - final state correlations that might help to understand the origin of collectivity in small systems
- Emphasis is on experimental challenges rather than an exhaustive catalogue of experimental results
Importance of MPI in pp (at LHC)

- Straightforward interpretation of pQCD $\sigma_{2\to2} > \sigma_{\text{tot}}$

Number of $2\to2$ scatterings per event, naïve factorization:

$$\langle n_{2\to2} \rangle = \frac{\sigma_{2\to2}}{\sigma_{\text{tot}}}$$

$$P_n = \frac{\langle n_{2\to2} \rangle^n}{n!} e^{-\langle n_{2\to2} \rangle}$$

$p_T \gg \Lambda_{\text{QCD}}$ for pQCD to be applicable

factorisation breaks for $n_{2\to2}$ large in area $\frac{1}{p_T^2}$

Challenge models based on MPI in this region!

At LHC multiple hard scatterings at perturbative scales

What do we know about the contribution to “bulk (low-p_T) particle” production? (event activity = proxy for MPI)
MPI and Charged Particle Multiplicity

- Particle yield from MPI $\propto \sigma_{\text{hard}}/\sigma_{\text{soft}}$ steeply rising with \sqrt{s}
 - additional factors $\propto A^{1/3}$ (pA), $\propto A^{4/3}$ (AA)

- Dominance of particle production at LHC?
 - $dN_{\text{ch}}/d\eta$ does not follow this trend
 - hard cross-section must be damped at low p_T
 - additional soft processes are important

What about jet like correlations?
Topological Identification of MPI

Di-Hadron Azimuthal Correlations

- “mini-jets” contribution to low-p_T “bulk” particle production
- Multiplicity dependence sensitive to relative contribution of hard-soft processes
- should be the Achilles heel of MPI based models

Quite well described by some of the MC tunes.
Two additional MPI model ingredients

\[\langle n_{2\rightarrow 2} \rangle = \frac{\sigma_{2\rightarrow 2}}{\sigma_{\text{tot}}} \]

\[P_n = \frac{\langle n_{2\rightarrow 2} \rangle^n}{n!} e^{-\langle n_{2\rightarrow 2} \rangle} \]

- Impact parameter dependence (needs proton density function)
- Coherence effects between MPIs
 - Color Reconnections (Pythia, Herwig, …)
 - Collective Hadronization (EPOS)
 - Rope Hadronisation (DIPSY)

Factorisation with Poisson Fluctuations not enough
Sensitivity to Impact Parameter Dependence: Charged Particle Multiplicity Distributions

Shape of multiplicity distribution sensitive to impact parameter dependence

\[P_n = \frac{\langle n \rangle^n}{n!} \exp(-\langle n \rangle) \]

\[d\sigma_{2\rightarrow2} = db^2 T_p (b_{pp},...) \]
Hallmark of MPI based models:
High p_T objects bias towards smaller b where probability for additional interactions is larger increased UE activity.
Clear discriminating power between different models (tunes)

However, to which extent can we constrain individual mode components:
- exact impact parameter dependence of hard/soft scattering?
- modelling of soft processes?
- confidence intervals for the parameters?

In principle proton density function could be x-dependent
- Which measurement would be sensitive to this?

\[
\rho(r, x) \propto \frac{1}{a^3(x)} \exp \left(-\frac{r^2}{a^2(x)} \right)
\]

\[
a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x} \right)
\]
Probing Coherence Effects

- N_{ch} dependent measurements inform
- to which extent high-multiplicity events can be understood as incoherent superposition of elementary collisions
- as such sensitive to coherence effects
Probing Coherence Effects

Two component model

- **Ledge Effect**: rise – plateau – rise

1st rise: increased dominance of hard over soft interactions

2nd rise: jet bias (jets contribute to soft particle production $\sim \ln E_{\text{jet}}$)

P. Skands
Pythia: Color Reconnections

Pythia:
Interplay between hard and soft not enough to describe rise
EPOS: Collective Hadronization

\[\langle p_T \rangle \text{ (GeV)} \]

\[N_{ch} \]

\[\text{7000 GeV pp} \] Soft QCD

Average \(p_T \) vs \(N_{ch} \)

- CMS
- Epos (1.99)
- Epos (LHC)

freeze out

collective hadron.

fragm.

primary inter.

Proj. p

Target p

fraction of particles from core

\[\frac{p + p |\eta|<2.4}{N_{chrg}} \]

7 TeV

900 GeV
What’s Next?

- Quite unsatisfactory that we cannot get separate effects related to
 - interplay of hard and soft particle production processes
 - jet biases
 - collective / coherence effects

- New observables?

- Absence of multiplicity dependence of v_2 (ATLAS) should be contrasted with multiplicity dependence of other observables

![Graph showing v_2 vs. multiplicity dependence at different ATLAS settings](image)
Ledge Effect Re-visited

Multiplicity measured in: $|\eta|<0.9$

arXiv:1509.08734v1

2.8 < η < 4.1 ∪ -3.7 < η < -1.7

- Spectra measured at mid-rapidity,
- hardness multiplicity dependent

- Scaling at high p_T, reminiscent of R_{pA}
- Informs about N_{MPI}
- “Some kind of centrality measure”
Rapidity Separated Measurements

$\Upsilon(1S)$

forward event activity

central event activity
New Ideas

Measurements as a function of the UE activity for fixed jet p_T range

P. Skands, arXiv:1603.0529

$$R_T = \frac{N_{\text{inc}}}{\langle N_{\text{inc}} \rangle}$$

Measurements as a function of event shape (transverse spherocity)

Poster, G Paic

$$S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_T^{i} \times \hat{n}|}{\sum_i p_T^{i}} \right)^2$$

$$S_0 = \begin{cases}
0 & \text{“pencil-like” limit (hard events)} \\
1 & \text{“isotropic” limit (soft events)}
\end{cases}$$

![Graph showing measurements as a function of the UE activity for fixed jet p_T range.]

![Graph showing measurements as a function of event shape (transverse spherocity).]
pA: Bias on hard processes from soft-hard correlations

- Study of soft-hard correlations and MPI in pp has lead to a better understanding of centrality determination (N_{coll}) in pA.

- Deviation from N_{coll} scaling if bias on hard processes in binary N-N collisions is not taken into account.
pA: Bias on hard processes from soft-hard correlations

MC

Data driven

DV Perepelitsa, P Steinberg arXiv:1412.0976

Slicing of Multiplicity in $2.8 < \eta < 5.1$

Glauber

Pythia
Low-p_T jet-like correlations in p-Pb

Corrected for contribution from v_2

Do collective effects modify di-hadron correlations?

With forward event activity estimators di-hadron correlations level out at high multiplicities

- Despite strong collective effects
- Can this discriminate models?
Correlations between MPIs in the Initial State

- Complete incoherent superposition of MPI relies also on naive pdf factorisation beyond standard QCD factorisation:

\[
\frac{d\sigma^{AA\rightarrow X}}{dp_T} \propto \sum_{n} f_i(x_i^n, Q_{n}^2) \cdot f_j(x_j^n, Q_{n}^2) \cdot \sigma^{ii\rightarrow k}(x_i^n, x_j^n, p_T / z, Q_{n}^2) \cdot D_{k\rightarrow X}(z, Q_{n}^2)
\]

- Draw partons many times from the same pdf
- Must be trivially broken at some level due to energy conservation
 - Taken into account by MC
- Non-trivial correlations between partons
 - in particular between \(x \) of the hardest scattering parton and the proton size

DV Perepelitsa, Tue Parallel Session
N Armesto et al., arXiv:1502.02986
x_{proj} Dependence of Jet Production

DV Perepelitsa, Tue Parallel Session

- Common “initial state” proton-x effect at RHIC and the LHC?
- Minimum Bias Unmodified
 - Centrality Bias?
Can effect be understood as superposition of N-N collisions?

Control measurement:
Forward summed E_T vs projectile (target) x

- Contrary to pPb, weak dependence on x_{proj}
- Effect in pPb not explained by N-N superposition.
- This is qualitatively expected if kinematic constraints on the proton pdf are responsible for the effect (more scatterings in pPb)
N_{ch} Centrality Dependence in AA

- S-shape reflects hard+soft scaling ($f N_{\text{part}} + (1-f) N_{\text{coll}}$)
- But shape almost energy independent.
 - **Strong \sqrt{s} dependence of the hard component expected**

0.2 and 2.76 TeV

- Charged particle density depends only on geometry.

2.76 and 5.02 TeV

arXiv:1512.06104

Phys. Rev. Lett. 106(2011)032301
Questions (instead of summary)

- How to move from MC tuning to extraction of physical parameters for the transverse structure of hadrons (including errors)?

- Can one constrain generalised pdf ($g(x,b)$) and multiparton pdfs?

- How does re-scattering modify (de-correlate) low-p_T jet-like correlations?

- Can “elementary” string interactions explain collective behavior in small systems?