utline Motivation Chiral Kinetic Theory Linear response analysis Result

Instabilities in Anisotropic Chiral Plasmas

Jitesh R. Bhatt

Theoretical Physics Division, Physical Research Laboratory, Ahmedabad

PLB757 (2016) 317.

In collaboration with: Kumar Avdhesh and P. K. Kaw

Initial Stages 2016 Lisbon, 23-27 May, 2016

E-mail: jeet@prl.res.in

- Motivation
- Chiral Kinetic Theory
- 3 Linear response analysis
- 4 Results

Motivation

Motivation

• Why Chiral plasma? There is a theoretical proposal that P and CP violation can manifest itself in heavy-ion collision.

Figure: Chiral magnetic effect (CME): Blue-arrows denote direction of spin and red-arrows momentum. 1. B is strong & particles are in the lowest Landau level and initially number of left-handed and right-handed particles are same. 2. Finite topological charge $Q_w \neq 0 (=-1)$, will convert the left-handed particles to right-handed one by reversing the direction of momentum. 3. The right-handed up quarks will move upwards, the right-handed down quarks will move downwards. A charge difference of Q = 2e will be created between two sides of a plane perpendicular to the magnetic field. (Fig. from Kharzeev, McIerran & Warringa 08)

D. Kharzeev, Phys. Lett. B 633, 260 (2006), D. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007).

D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),

Motivation

- Three-particle correlator (P-even observable) measured at STAR collaboration indicate charge separation. However, more verifications are required.
- We shall focus on the kinetic theory which incorporate P-violating features and satisfy the anomaly equation:

$$\partial_{\mu} j_{5}^{\mu} = C F^{\mu\nu} \tilde{F}_{\mu\nu} \tag{1}$$

- Such theory can have an instability arising due to imbalance in "chiral-chemical-potential"
- ullet The number density: μT^2 & energy-density: $\mu^2 T^2$
- From anomaly Eq. no. density in the gauge field $\sim \alpha kA^2$ and comparing these two number-density: $k \sim \frac{\mu T^2}{\alpha A^2}$.
- Typical energy density in the gauge field $\epsilon_A \sim k^2 A^2 = \mu^2 T^2 \left(\frac{T^2}{\alpha^2 A^2} \right)$
- Thus for $\frac{T^2}{\alpha^2 A^2} < 1$, for the given value of k, the gauge-field can have lower energy than the particle energy $\mu^2 T^2$. This is an unstable situation.
- This instability is known in electroweak plasma (in context of primordial magnetic field)

e.g. M. Joyce & M. Shaposhnikov, PRL, 79, 1193, (1997)

Weibel Instability:

Figure: Geometry for Weibel Instability.

- Momentum anisotropy can be present during an early stages of heavy-ion collision may cause Weibel instability (Abe & Niu 1980, Mrowczynski 1988 etc.) to grow.
- One considers the initial distribution function $n_{\mathbf{p}}^0 = \frac{1}{[\mathrm{e}^{(\tilde{p}-\mu_R)/T}+1]}$ where,

$$\tilde{p} = p\sqrt{1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2}$$

E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959),
 B. D. Fried, Phys. Fluids 2, 337 (1959).

Chiral Kinetic Theory

$$\begin{split} \dot{\eta}_{\textbf{p}} + \dot{\textbf{x}} \cdot \frac{\partial n_{\textbf{p}}}{\partial \textbf{x}} + \dot{\textbf{p}} \cdot \frac{\partial n_{\textbf{p}}}{\partial \textbf{p}} &= 0, \\ \dot{\textbf{x}} &= \frac{1}{1 + e \textbf{B} \cdot \Omega_{\textbf{p}}} \left(\tilde{\textbf{v}} + e \tilde{\textbf{E}} \times \Omega_{\textbf{p}} + e (\tilde{\textbf{v}} \cdot \Omega_{\textbf{p}}) \textbf{B} \right), \\ \dot{\textbf{p}} &= \frac{1}{1 + e \textbf{B} \cdot \Omega_{\textbf{p}}} \Big[\left(e \tilde{\textbf{E}} + e \tilde{\textbf{v}} \times \textbf{B} + e^2 (\tilde{\textbf{E}} \cdot \textbf{B}) \Omega_{\textbf{p}} \right) \Big], \end{split}$$

- where $\tilde{\mathbf{v}} = \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}}$, $e\tilde{\mathbf{E}} = e\mathbf{E} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{x}}$, $\epsilon_{\mathbf{p}} = p(1 e\mathbf{B} \cdot \Omega_{\mathbf{p}})$ and $\Omega_{\mathbf{p}} = \pm \mathbf{p}/2p^3$. Here \pm sign corresponds to right and lefted handed fermions respectively.
- ullet If $\Omega_p=0$, above equation reduces to Vlasov equation.
- From above equation it is easy to get,

$$\partial_t n + \nabla \cdot \mathbf{j} = e^2 \int \frac{d^3 p}{(2\pi)^3} \left(\Omega_p \cdot \frac{\partial n_p}{\partial p} \right) \mathbf{E} \cdot \mathbf{B},$$

where,

$$n=\intrac{d^3p}{(2\pi)^3}(1+\mathrm{e}\mathsf{B}\cdot\Omega_\mathsf{p})n_\mathsf{p},$$

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

$$\begin{split} \textbf{j} &= -e \int \frac{d^3p}{(2\pi)^3} \left[\epsilon_\textbf{p} \frac{\partial n_\textbf{p}}{\partial p} + e \left(\Omega_\textbf{p} \cdot \frac{\partial n_\textbf{p}}{\partial p} \right) \epsilon_\textbf{p} \textbf{B} + \epsilon_\textbf{p} \Omega_\textbf{p} \times \frac{\partial n_\textbf{p}}{\partial x} \right] + \textbf{E} \times \boldsymbol{\sigma}. \\ \boldsymbol{\sigma} &= \int \frac{d^3p}{(2\pi)^3} \Omega_\textbf{p} n_\textbf{p}. \end{split}$$

• Here onwards we use $v = \frac{\mathbf{p}}{\rho}$ (not to be confused with \tilde{v}).

$$\dot{n}_{\boldsymbol{p}} + \frac{1}{1 + e\boldsymbol{B} \cdot \boldsymbol{\Omega}_{\boldsymbol{p}}} \Big[\left(e\tilde{\boldsymbol{E}} + e\tilde{\boldsymbol{v}} \times \boldsymbol{B} + e^2 (\tilde{\boldsymbol{E}} \cdot \boldsymbol{B}) \boldsymbol{\Omega}_{\boldsymbol{p}} \right) \cdot \frac{\partial n_{\boldsymbol{p}}}{\partial \boldsymbol{p}} + \left(\tilde{\boldsymbol{v}} + e\tilde{\boldsymbol{E}} \times \boldsymbol{\Omega}_{\boldsymbol{p}} + e(\tilde{\boldsymbol{v}} \cdot \boldsymbol{\Omega}_{\boldsymbol{p}}) \boldsymbol{B} \right) \cdot \frac{\partial n_{\boldsymbol{p}}}{\partial \boldsymbol{x}} \Big] = 0,$$

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,

Linear response analysis of anisotropic chiral plasma

Linear response analysis:

$$j_{ind}^i = \Pi^{ij}(K)A_j(K),$$

 $\Pi^{ij}(K)$ is the polarization tensor and for the present case:

$$\Pi^{ij}(K) = \Pi^{ij}_{+}(K) + \Pi^{im}_{-}(K) \tag{2}$$

• Parity even part: $\Pi_{\perp}^{ij}(K)$ & Parity odd: $\Pi^{ij}(K)$

$$\Pi^{ij}_{+}(K) = m_D^2 \int \frac{d\Omega}{4\pi} \frac{v^i(v^l + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})\hat{n}^l)}{(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^2} \left(\delta^{jl} + \frac{v^j k^l}{v \cdot k + i\epsilon}\right),$$

This expression of Π_{+}^{ij} matches with Romatschke & Strickland PRD68, 08. What is new is the following (Weibel parameters enters parity odd physics):

$$\begin{split} \Pi^{im}_{-}(K) &= C_E \int \frac{d\Omega}{4\pi} \left[\frac{i \epsilon^{ilm} k^l v^j v^i (\omega + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})(\mathbf{k} \cdot \hat{\mathbf{n}}))}{(v \cdot k + i\epsilon)(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^{3/2}} + \left(\frac{v^j + \xi(\mathbf{v} \cdot \hat{\mathbf{n}}) \hat{n}^j}{(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^{3/2}} \right) i \epsilon^{iml} k^l v^j - i \epsilon^{ijl} k^l v^j \left(\delta^{mn} + \frac{v^m k^n}{v \cdot k + i\epsilon} \right) \left(\frac{v^n + \xi(\mathbf{v} \cdot \hat{\mathbf{n}}) \hat{n}^n}{(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^{3/2}} \right) \right] \end{split}$$

where, $m_D^2 = \frac{\mu^2}{2-2} + \frac{T^2}{6}$ and $C_F = \frac{\mu_5}{4-2}$.

- Thus the results should depend upon μ_5 , $\xi \& \theta_n$ where, θ_n is the angle between wave-vector and anisotropy-direction.
- Weibel instability grows maximally for $\theta_n = 0$ whereas it damps for $\theta_n = \pi/2$.
- Chiral-plasma instability (CPI) can exist when $\xi = 0$.
- Ratio of maximum growth rates of both the instabilities: $\frac{\Gamma_{ch}}{\Gamma} \approx \frac{1}{4\pi^3} \left(\frac{\alpha}{\varepsilon}\right)^{3/2} \left(\frac{\mu_5}{T}\right)^3$ where, α is the coupling constant.
- For $\xi > 1$ and $\mu_5 \leq T$ the Weibel modes can dominate over CPI.
- For certain values of θ_n the Weibel modes may not dominate. For $\xi \gg 1$, and setting $\omega=0$ in dispersion relation, one can obtain $\theta_{nc}\sim \left(\frac{\pi\,m_D^2}{2k^2}\right)^{1/2}\xi^{-1/4}$

Results

• In small ξ limit ($\xi \ll 1$), it is possible to express analytical dispersion relation ($\omega = i\rho$):

$$\rho(k) = \left(\frac{4\alpha^3 \mu_5^3}{\pi^4 m_D^2}\right) k_N^2 \left[1 - k_N + \frac{\xi}{12} (1 + 5\cos 2\theta_n) + \frac{\xi}{12} (1 + 3\cos 2\theta_n) \frac{\pi^2 m_D^2}{\mu_5^2 \alpha^2 k_N}\right]. \tag{3}$$

where, $k_{N}=rac{\pi k}{\mu_{5}lpha}$.

- Here first term (unity) in the square bracket is due to pure chiral-mode. The factor $\frac{\xi}{12}(1+5\cos2\theta_n)$ is due to coupling between the two instabilities. Last term is due to pure-Weibel instability.
- For $\theta_n=0$ comparing the maximum growth-rate of both the instabiliites one finds: $\xi_c\approx 2^{2/3}\left(\frac{\alpha}{4\pi^2}\right)\left(\frac{\mu_5}{T}\right)^2$ which is a small number for $\mu_5\leq 1$. For $\xi>\xi_c$ the Weibel modes will dominate.
- Similarly one can find critical value for $\theta_{nc}\sim \frac{1}{2}\cos^{-1}\left[\left(\frac{2}{27}\right)^{2/3}\frac{12\mu_5^2\alpha^2}{\xi\pi^2m_D^2}-\frac{1}{3}\right]$

tline Motivation Chiral Kinetic Theory Linear response analysis Results

Results and conclusions

Results for large ξ in the case of the quasi-stationary limit ($|\omega| << k$) can obtained by numerically solving the dispersion relation:

Case-I: When propagation vector k is parallel to anisotropy vector

Figure: Shows plots of real and imaginary part of the transverse dispersion relation for the case when the angle θ_B between the propagation vector k of the perturbation and the anisotropy direction is zero. The modes are purely imaginary and the real part of frequency $\omega=0$. Fig. (1a) shows comparison between pure Weibel modes ($\mu_5=0$) with the cases when both the Weibel and chiral-imbalance instabilities are present when $\mu_5/T=1$ and $\xi=0.1,1$. Fig. (1b) depicts the similar comparison when $\mu_5/T=1$ to shows that by increasing μ_5/T the chiral-imbalance instability become stronger.

Results and conclusions

Case-II: When propagation vector k is perpendicular to anisotropy vector

Figure: Shows plots of the dispersion relation when $\theta_n = \pi/2$. The pure Weibel modes are known to give damping when $\theta_R=\pi/2$. For the instances when both the chiral-imbalance and Weibel instabilities are present ($\mu_5/T=10$ and $\xi=0.1,1$) the damping can become weaker.

For $\xi \gg 1$, one can estimate particular range of θ_n where the chiral modes could be dominant by setting $\omega=0$, in pure-Weibel modes, one obtains $\theta_{nc}\sim \left(\frac{\pi m_D^2}{2k^2}\xi^{-1/4}\right)$.

THANK YOU

(4)

Linear response analysis of anisotropic chiral plasma

$$\Pi^{ij}_{+}(K) = \Pi^{ij}_{+}(K) + \Pi^{im}_{-}(K)$$

$$\Pi^{ij}_{+}(K) = m_D^2 \int \frac{d\Omega}{4\pi} \frac{v^i(v^l + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})\hat{n}^l)}{(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})\hat{n}^l)^2} \left(\delta^{jl} + \frac{v^j k^l}{v.k + i\epsilon}\right),$$

$$\Pi^{im}_{-}(K) = C_E \int \frac{d\Omega}{4\pi} \left[\frac{i\epsilon^{jlm} k^l v^j v^i (\omega + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})(\mathbf{k} \cdot \hat{\mathbf{n}}))}{(v.k + i\epsilon)(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^{3/2}} + \left(\frac{v^j + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})\hat{n}^j}{(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^{3/2}}\right) i\epsilon^{iml} k^l v^j - i\epsilon^{ijl} k^l v^j \left(\delta^{mn} + \frac{v^m k^n}{v.k + i\epsilon}\right) \left(\frac{v^n + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})\hat{n}^n}{(1 + \xi(\mathbf{v} \cdot \hat{\mathbf{n}})^2)^{3/2}}\right) \right]$$

where,

$$\begin{split} m_{D}^{2} &= -\frac{e^{2}}{2\pi^{2}} \int_{0}^{\infty} d\bar{p}^{2} \left[\frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{R})}{\partial \bar{p}} + \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} + \mu_{R})}{\partial \bar{p}} + \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{L})}{\partial \bar{p}} + \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{L})}{\partial \bar{p}} + \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{L})}{\partial \bar{p}} \right] \\ C_{E} &= -\frac{e^{2}}{4\pi^{2}} \int_{0}^{\infty} d\bar{p}\bar{p} \left[\frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{R})}{\partial \bar{p}} - \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} + \mu_{R})}{\partial \bar{p}} - \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{L})}{\partial \bar{p}} + \frac{\partial n_{\bar{\mathbf{p}}}^{0(0)}(\bar{p} - \mu_{L})}{\partial \bar{p}} \right]. \end{split}$$

• After performing above integrations one can get $m_D^2 = \frac{\mu_5^2}{2\pi^2} + \frac{T^2}{6}$ and $C_E = \frac{\mu_5}{4\pi^2}$. It can be noticed that the terms with anisotropy parameter ξ are contributing in both parity-even and odd part of the self-energy or polarization tensor.

$$j^{\mu}_{ind} = \Pi^{\mu\nu}(K)A_{\nu}(K),$$

Maxwell equation,

$$\partial_{
u}F^{
u\mu} = j^{\mu}_{ind} + j^{\mu}_{ext}.$$
 $j^{\mu}_{ind} = \Pi^{\mu
u}(K)A_{
u}(K),$

- $\Pi^{\mu\nu}(K)$ is the retarded self energy in Fourier space. Here we denote the Fourier transform as $F(K)=\int d^4x e^{-i(\omega t-{\bf k}\cdot{\bf x})}F(x,t)$.
- Choosing temporal gauge $A_0 = 0$

$$[(k^2 - \omega^2)\delta^{ij} - k^i k^j + \Pi^{ij}(K)]E^j = i\omega j_{\text{ext}}^i(k).$$

• From this one can define,

$$[\Delta^{-1}(K)]^{ij} = (k^2 - \omega^2)\delta^{ij} - k^i k^j + \Pi^{ij}(K).$$

• The poles of $[\Delta(K)]^{ij}$ will give us the dispersion relation.

Finding the Poles of $[\Delta(K)]^{ij}$ or Dispersion relation

• We decompose first $\Pi^{ij}(K)$ in following six tensorial basis,

$$\Pi^{ij} = \alpha P_T^{ij} + \beta P_L^{ij} + \gamma P_n^{ij} + \delta P_{kn}^{ij} + \lambda P_A^{ij} + \chi P_{An}^{ij}.$$

Where.

$$\begin{split} P_T^{ij} &= \delta^{ij} - k^i k^j / k^2 \\ P_L^{ij} &= k^i k^j / k^2 \\ P_n^{ij} &= \tilde{\kappa}^i \tilde{\kappa}^j / \tilde{\kappa}^2 \\ P_{kn}^{ij} &= \tilde{\kappa}^i \tilde{\pi}^j / \tilde{\kappa}^2 \\ P_{kn}^{ij} &= k^i \tilde{\pi}^j + k^j \tilde{\pi}^i \\ P_A^{ij} &= i \epsilon^{ijk} \hat{\kappa}^k \\ P_{kn}^{ij} &= i \epsilon^{ijk} \tilde{\kappa}^k . \end{split}$$

• $\alpha, \beta, \gamma, \delta \lambda$ and χ are some scalar functions of k and ω which can be determined by $\alpha = (P_T^{ij} - P_n^{ij})\Pi^{ij}$, $\beta = P_L^{ij}\Pi^{ij}$, $\gamma = (2P_n^{ij} - P_T^{ij})\Pi^{ij}$, $\delta = \frac{1}{2\sqrt{2}\pi^2}P_{kn}^{ij}\Pi^{ij}$ $\lambda = -\frac{1}{2}P_{A}^{ij}\Pi^{ij}$ and $\chi = -\frac{1}{2\pi^2}P_{AB}^{ij}\Pi^{ij}$.

• We shall first do the analysis in the small ξ limit (Very weak anisotropy),

$$\begin{array}{rcl} \alpha & = & \Pi_T + \xi \Big[\frac{z^2}{12} (3 + 5 \cos 2\theta_n) m_D^2 - \frac{1}{6} (1 + \cos 2\theta_n) m_D^2 + \frac{1}{4} \Pi_T \left((1 + 3 \cos 2\theta_n) - z^2 (3 + 5 \cos 2\theta_n) \right) \Big]; \\ z^{-2} \beta & = & \Pi_L + \xi \Big[\frac{1}{6} (1 + 3 \cos 2\theta_n) m_D^2 + \Pi_L \Big(\cos 2\theta_n - \frac{z^2}{2} (1 + 3 \cos 2\theta_n) \Big) \Big]; \\ \gamma & = & \frac{\xi}{3} (3\Pi_T - m_D^2) (z^2 - 1) \sin^2 \theta_n; \\ \delta & = & \frac{\xi}{3k} (4z^2 m_D^2 + 3\Pi_T (1 - 4z^2)) \cos \theta_n; \\ \lambda & = & -\Pi_A / 2 - \xi \frac{\mu k e^2}{8\pi^2} \Big[(1 - z^2) \frac{\Pi_L}{m_D^2} ((3 \cos 2\theta_n - 1) \\ & - & 2z^2 (1 + 3 \cos 2\theta_n) \Big) + \frac{2z^2}{3} (1 - 3 \cos 2\theta_n) - \frac{43}{15} + \frac{22}{10} (1 + \cos 2\theta_n) \Big]; \\ \chi & = & \xi \left[f(\omega, k) \right], \end{array}$$

- Here θ_n is the angle between wave vector **k** and anisotropy vector **n**.
- Expressions for Π_T, Π_I are given as,

$$\begin{split} \Pi_T &= m_D^2 \frac{\omega^2}{2k^2} \left[1 + \frac{k^2 - \omega^2}{2\omega k} \ln \frac{\omega + k}{\omega - k} \right], \\ \Pi_L &= m_D^2 \left[\frac{\omega}{2k} \ln \frac{\omega + k}{\omega - k} - 1 \right], \Pi_A &= \frac{\mu k e^2}{2\pi^2} \left[(1 - z^2) \frac{\Pi_L}{m^2} \right] \end{split}$$

17

Finding the Poles of $[\Delta(K)]^{ij}$ or Dispersion relation

ullet Similarly we can write $[\Delta^{-1}(k)]^{ij}$ as

$$[\Delta^{-1}(K)]^{ij} = C_T P_T^{ij} + C_L P_L^{ij} + C_n P_n^{ij} + C_{kn} P_{kn}^{ij} + C_A P_A^{ij} + C_{An} P_{An}^{ij}.$$

ullet Coefficients C's and lpha's have the following relationship.

$$C_{T} = k^{2} - \omega^{2} + \alpha$$

$$C_{L} = -\omega^{2} + \beta$$

$$C_{n} = \gamma$$

$$C_{kn} = \delta$$

$$C_{A} = \lambda$$

$$C_{An} = \chi$$

- ullet So once we know $lpha,eta,\ \gamma,\ \delta\ \lambda$ and χ we can determine coefficient C's.
- But In order to get dispersion relation we have to find poles of $[\Delta(K)]^{\ddot{y}}$ not of $[\Delta^{-1}(K)]^{\ddot{y}}$.

Finding the Poles of $[\Delta(K)]^{ij}$ or Dispersion relation

 Now using the fact that inverse of a vector should exist in same space, one can decompose $[\Delta(K)]^{ij}$.

$$[\Delta(K)]^{ij} = aP_L^{ij} + bP_T^{ij} + cP_n^{ij} + dP_{kn}^{ij} + eP_A^{ij} + fP_{An}^{ij}$$

Now, using the relation.

$$[\Delta^{-1}(K)]^{ij}[\Delta(K)]^{jl}=\delta^{il}$$

One can find the following dispersion relation,

$$2k\tilde{n}^{2}C_{A}C_{An}C_{kn} + C_{A}^{2}C_{L} + \tilde{n}^{2}C_{An}^{2}(C_{n} + C_{T}) - C_{T}(-k^{2}\tilde{n}^{2}C_{kn}^{2} + C_{L}(C_{n} + C_{T})) = 0.$$
 (5)

In the weak anisotropy limit, one can write the dispersion relation as,

$$C_A^2C_L-C_TC_L(C_n+C_T))=0,$$

Which give following two branches of Dispersion relation,

$$C_A^2 - C_T^2 - C_n C_T = 0.$$

$$C_L = 0.$$

- When $C_A = 0$, above equations reduces to exactly the same dispersion relation discussed in Ref. given below for an anisotropic plasma where there is no parity violating effect.
- Equation for transverse modes give the following solution.

$$(k^2 - \omega^2) = \frac{-(2\alpha + \gamma) \pm 2\lambda}{2}.$$

⁷P. Romatschke, M. Strickland, Phys. Rev. D 68 036004 (2003)

Dispersion relation

• In the quasi stationary limit $|\omega| << k$ one can get the final form of dispersion relation as $\omega = i\rho(k)$, where $\rho(k)$ is given by.

$$\rho(k) = \left(\frac{4\alpha^3 \mu_5^3}{\pi^4 m_D^2}\right) k_N^2 \left[1 - k_N + \frac{\xi}{12} (1 + 5\cos 2\theta_n) + \frac{\xi}{12} (1 + 3\cos 2\theta_n) \frac{\pi^2 m_D^2}{\mu_5^2 \alpha^2 k_N}\right].$$
 (6)

- Where $k_N = \frac{\pi k}{\mu_F \alpha}$, and $\alpha = \frac{e^2}{4\pi}$ is the electromagnetic coupling.
- In the limit $\xi \to 0$ we will get,

$$\rho(k) = \left(\frac{4\alpha^{3}\mu_{5}^{3}}{\pi^{4}m_{D}^{2}}\right)k_{N}^{2}\left[1 - k_{N}\right]$$

• In the limit $\mu \to 0$ we will get,

$$\rho(k) = \left(\frac{4\alpha_e^3 \mu_5^3}{\pi^4 m_D^2}\right) k_N^2 \left[-k_N + \frac{\xi}{12} \left(1 + 3\cos 2\theta_n \right) \frac{\pi^2 m_D^2}{\mu_5^2 \alpha_e^2 k_N} \right].$$

P. Romatschke, M. Strickland, Phys. Rev. D 68 036004 (2003),

Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013).

Analysis of the instabilities

- Weibel instability grows maximally for $\theta_n = 0$.
- Weibel instability gets suppressed when $\cos 2\theta_n = -1/3$ i.e $\theta_n \approx 55^\circ$.
- The ratio of maximum growth rates for chiral and Weibel comes out to be $\frac{\Gamma_{ch}}{\Gamma_w} \approxeq \frac{1}{4\pi^3} \left(\frac{\alpha_e}{\xi}\right)^{3/2} \left(\frac{\mu_5}{T}\right)^3.$
- One can find for $\theta_n=0$ the critical value $\xi_c\approx 2^{2/3}\left(\frac{\alpha_e}{4\pi^2}\right)\left(\frac{\mu_5}{T}\right)^2$ at which the maximum growth rates of the two instabilities become comparable.
- Two instabilities will have comparable growth at a critical angle $\theta_{c} = \frac{1}{2} \cos^{-1} \left[\left(\frac{2}{27} \right)^{2/3} \frac{12 \mu_{5}^{2} \alpha^{2}}{\xi \pi^{2} m_{D}^{2}} \frac{1}{3} \right].$

Results and conclusions

Figure: Shows plots of real and imaginary part of the dispersion relation. Here θ_R is the angle between the wave vector k and the anisotropy vector. Real part of dispersion relation is zero. Fig. (a) show plots for three cases: (i) Pure chiral (no anisotropy), (ii) Pure Weibel (chiral chemical potential=0) and (iii) When both chiral and Weibel instabilities at $\theta_n = 0$. Fig (b-d) represents the case when both instabilities are present but the anisotropy parameter varies at different values of θ_n for fixed $\mu_5/T=1$. Here frequency is normalized in unit of $\omega/\left(\frac{4\alpha^3\mu_5^3}{\pi^4m_5^2}\right)$ and wave-number k by $k_{\text{N}}=\frac{\pi}{\mu_5\alpha}k$

Results and conclusions

Figure: Shows plots of real and imaginary part of the dispersion relation. Here θ_n is the angle between the wave vector k and the anisotropy vector. Real part of dispersion relation is zero. Fig. (a-b) represent the case when both the instabilities are present for fixed $\xi=10\xi_{C}$ and $\mu_{5}/T=1$, 0.1 by varying θ_{R} respectively. Fig. (c) represents the case when for a particular value of $\theta_{R}\sim\theta_{C}$ two instabilities have equal growth at different ξ values. Here frequency is normalized in unit of $\omega/\left(\frac{4\alpha^3\,\mu_5^2}{\pi^4\,m_{\rm Pl}^2}\right)$ $k_N = \frac{\pi}{\mu_5 \alpha} k$.