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Motivation

Motivation

o Why Chiral plasma?
There is a theoretical proposal that P and CP violation can manifest itself in
heavy-ion collision.

Figure: Chiral magnetic effect (CME): Blue-arrows denote direction of spin and
red-arrows momentum. 1. B is strong & particles are in the lowest Landau level
and initially number of left-handed and right-handed particles are same. 2. Finite
topological charge Qw # 0(= —1), will convert the left-handed particles to
right-handed one by reversing the direction of momentum. 3. The right-handed
up quarks will move upwards, the right-handed down quarks will move
downwards. A charge difference of Q = 2e will be created between two sides of a
plane perpendicular to the magnetic field.(Fig. from Kharzeev, Mclerran &
Warringa 08)

D. Kharzeev, Phys. Lett. B 633, 260 (2006),
D. Kharzeev, L.D. Mclerran and H.J. Warringa, Nucl. Phys. A 803, 227 (2008),
~ Zhitnitskv Nucl Phve A 797 67 (2007)




Motivation

Motivation

o Three-particle correlator (P-even observable) measured at STAR collaboration
indicate charge separation. However, more verifications are required.

@ We shall focus on the kinetic theory which incorporate P-violating features and
satisfy the anomaly equation:

O = CFW’:_/W 1)
@ Such theory can have an instability arising due to imbalance in
" chiral-chemical-potential”
@ The number density: ©T? & energy-density: u? T2
o From anomaly Eq. no. density in the gauge field ~ akA? and comparing these
2
I3

ity: k ~ BT
two number-density: k ~ £25.

o Typical energy density in the gauge field €4 ~ k?A% = p2 T2 <a72—:2)

2 )
@ Thus for —I—» < 1, for the given value of k, the gauge-field can have lower
a’A
energy than the particle energy 12 T2. This is an unstable situation.

o This instability is known in electroweak plasma (in context of primordial magnetic
field)

e.g. M. Joyce & M. Shaposhnikov, PRL, 79, 1193, (1997)
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Motivation

Weibel Instability:

(a)

Figure: Geometry for Weibel Instability.

o Momentum anisotropy can be present during an early stages of heavy-ion collision
may cause Weibel instability (Abe & Niu 1980, Mrowczynski 1988 etc.) to grow.
@ One considers the initial distribution function ng = % where,
[e( MR)/T+1]

B=py1+E(v-h)2

E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959),
B. D. Fried, Phys. Fluids 2, 337 (19509).



Chiral Kinetic Theory

Chiral Kinetic Theory

. . Onp . Onp
np+x-—+p-— =0,
P Ox P op
i—— L (iteExn v-Q,)B
*= (v+e X Qp + (¥ - Q) ),
. 1 L .
p—m[(eE+eVXB+e(E-B)Qp>],

@ where V = 80—6:, eE = eE — %, ep = p(1 — eB - Q,) and Q, = +p/2p>. Here + sign
corresponds to right and lefted handed fermions respectively.

@ If Q, =0, above equation reduces to Vlasov equation.

@ From above equation it is easy to get,

d3p on,
) v.':2/ Q~—p>E-B,
e vI=e (2#)3( » o

d3p
" / @rys (L eB- o),

where,

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,



Chiral Kinetic Theory

Chiral kinetic theory

) d3p on, on on,
j=—e @) |:6p8—:+e(ﬂp-8—;)ep3+epﬂp><a—xp +Exo.

d3p
o-:/i(zﬂ)aﬂpnp.

o Here onwards we use v = % (not to be confused with 7).

D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013) [arxiv:1210.815].,
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Linear response analysis

Linear response analysis of anisotropic chiral plasma

@ Linear response analysis:
-iflnd = nU(K)Aj(K)7
M¥(K) is the polarization tensor and for the present case:

M7(K) = NL(K) + N7(K) &)
@ Parity even part: I'I"j;(K) & Parity odd: NY (K)

iy o [(dV( HEv-R)) (g VK
n+(K)_mD/47r arew-apr O ki)

This expression of I'IZ matches with Romatschke & Strickland PRD68, 08. What is new is the
following (Weibel parameters enters parity odd physics):

i dQ [ idmk'Vv/ :
n'T(K):cE/—{’E vl Sy

(k.A)) ( V4 E(v- A > iem !
4

A)
(ki) +e(-aRp2 L+ e(-apy/2

L (sm g ) (s
i€ kvj(é +v.k+ie> ((1+§(v~ﬁ)2)3/2
2

2 _ T _ us
where, mp = 5= + & and Cg = 5.




Linear response analysis

Linear response analysis of anisotropic chiral plasma

@ Thus the results should depend upon us, £ & 6, where, 0, is the angle between
wave-vector and anisotropy-direction.
o Weibel instability grows maximally for 6, = 0 whereas it damps for 6, = 7/2.
o Chiral-plasma instability (CPI) can exist when £ = 0.
@ Ratio of maximum growth rates of both the instabilities:
%’ ~ ﬁ (%) /2 (“—T5)3 where, « is the coupling constant.
o For £ > 1 and pus < T the Weibel modes can dominate over CPI.

o For certain values of 8, the Weibel modes may not dominate. For £ > 1, and

1/2
setting w = 0 in dispersion relation, one can obtain 6,c ~ (%) £-1/4



Results

@ In small £ limit (£ < 1), it is possible to express analytical dispersion relation

(w = ip):
42’3\ o 3 3 w*mp
k) = ky |1 —k —(1+5 20, —(1+43 20, . 3
p(K) (Mm% VTR (L Seos20) (14 3cos20) R (3)
_ 7k
where, ky = et

o Here first term (unity) in the square bracket is due to pure chiral-mode. The
factor %(1 + 5cos 20,) is due to coupling between the two instabilities. Last
term is due to pure-Weibel instability.

@ For 6, = 0 comparing the maximum growth-rate of both the instabiliites one
finds: & ~ 22/3 (ﬁ) (”—75‘)2 which is a small number for pus < 1. For & > &¢
the Weibel modes will dominate.

1)2/3 12/,L§a2 1

o Similarly one can find critical value for fnc ~ % cos™! ( T T3
27 &m2mi 3

2



Results and conclusion

Results for large £ in the case of the quasi-stationary limit (Jw| << k) can obtained by
numerically solving the dispersion relation:
o Case-l: When propagation vector k is parallel to anisotropy vector

Kfmp

o — Relw]
om0 =+ £20.10,=0" E=10.m{w], Chiral+ Weibel

00s
£=0.16,

20 Imlw] Weibel

- £21,6,=0" E=10,Im{w] Chirals+ Weibel

—o0s

= 210,07, B0, Im{w] Weibel

o 02 0 06 [ 0

K/mp

Figure: Shows plots of real and imaginary part of the transverse dispersion relation for the case when the angle 6, between the
propagation vector k of the perturbation and the anisotropy direction is zero. The modes are purely imaginary and the real part of

frequency w = 0. Fig. (1a) shows comparison between pure Weibel modes (115=0) with the cases when both the Weibel and

chiral-imbalance instabilities are present when p5 /T =1 and £ =0.1,1 . Fig. (1b) depicts the similar comparison when w5/ T =10.

shows that by increasing w5/ T the chiral-imbalance instability become stronger.



Results and conclusion

o Case-ll: When propagation vector k is perpendicular to anisotropy vector

005 — Relw]

w=ee £20.1,6,=90, 5=10,Im{w], Chiral+ Weibel

°

-0.05 o s
£20.1,6,290, 50, Tm{w], Weibel

Re,Im(w)/mp

-0.10
10.Im{],Chiral+ Weibel

=0.15
0,Im[w],Weibel

k/mp

(a)

Figure: Shows plots of the dispersion relation when 6, = 7 /2. The pure Weibel modes are known to give damping when
6n = 7 /2. For the instances when both the chiral-imbalance and Weibel instabilities are present ( 5/ T =10 and £ = 0.1,1) the

damping can become weaker.

2
dominant by setting w = 0, in pure-Weibel modes, one obtains 0, ~ (7;':2”

For £ > 1, one can estimate particular range of 6, where the chiral modes could be
571/4) .
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Linear response analysis of anisotropic chiral plasma

ni(Kk) = N¥(K) + N™(K) (4)

i Al !
HZ(K):mé/ﬂv(vﬁ_é(v.n)z)(5j’+ vk )’

A (1+&(v-h)?) v.k +ie

imp dQ [ ik vi(w + £(v - A)(k.R)) Ve o)A N\
=0 = CE/E[ (v-k+ie)(1+€(v-n)2)3/2 " ((1+E(V'ﬁ)2)3/2> ey

g (s, VK" V't E(v - A)A” )
ety (‘5 * v.k+fe> ((1+£(v-ﬁ)2)3/2

where,
. 0(0), 5 o 0(0), 4 0(0) . 0(0), «
) @ oo o106 —ug) 9 OGrug) 9086 —ny)  9nd6 — )
mp = ——— / dpp - + - + - + -
272 Jo ap ap ap ap
0(0), 0(0) 0(0), 0(0),

2 e [anﬁ‘ V6 - g oD ug)  an G — ) on O - m}
Ce=—— 55 - - + .
472 Jo ap ap ap ap

. . . > u2 72 s
@ After performing above integrations one can get mp, = 32 + % and Cg = o It can be

noticed that the terms with anisotropy parameter £ are contributing in both parity-even and
odd part of the self-energy or polarization tensor.

by = HY(K)Ay (K),



Linear response analysis of anisotropic chiral plasma

o Maxwell equation,
OF"H = b+ b
Jina = M (K)AL(K),

M#¥(K) is the retarded self energy in Fourier space. Here we denote the Fourier
transform as F(K) = [ d*xe («@t=kX)F(x t).

Choosing temporal gauge Ap = 0
(K — w2)87 — KK 4+ NI(K)IET = iwojLe(K)-

@ From this one can define,
[ATHK)T = (k2 = w?)6T — KK + NI (K).

The poles of [A(K)]¥ will give us the dispersion relation.



Finding the Poles of [A(K)]¥ or Dispersion relation

o We decompose first M¥(K) in following six tensorial basis,

N = aPi 4 gPY + P 4+ 6PI + AP 4+ xPI .

o Where,
Pi =67 — KK /K
PI = k'K /12
=AH /P
Pi = K + ki
PY = ie k¥
Py = ie™i*
n .

e a,f3, 7, 6 A and x are some scalar functions of k and w which can be determined
bya—(P” —P”)I'I’J 8= P'JI'IU,'y—(2P’J )I'I’f 6= P” ni

_1pi U 1 i ni
A=—5P;MY and x = 2HZPAHI'I.

2k2 A2




Finding the Poles of [A(K)]Y or Dispersion relation

@ We shall first do the analysis in the small £ limit (Very weak anisotropy),

22

1 1
Nnr + §{E(3 + 5cos20,,)m2D - g(l + cos29n)m2D + ZHT ((1 + 3cos26,) — 22(3 + 5cos29n)) ];
1 22
2
ng +§[g(1 + 3cos20,)mp + I'IL(COSZB,7 — ?(1 +3<:0529,7))};

@M1 — m3)(2% — 1) sin? O,;

WM

(4zzm2D +3Mr(1— 412))c059,,;

L|m

n
L ((3cos26, — 1)

2

ke
—Ma2—¢— [0 -2 —
8 mp

222(1 + 3cos 20,,)) 222 (1 — 3cos26,) 3 22(1 20 )]
z + 3 cos + — (1 — 3cos — — + — (1 + cos H
" 3 "5 10 "

§[f(w, K,

@ Here 0, is the angle between wave vector k and anisotropy vector n.
@ Expressions for [, I, are given as,

2 2 2

5 w ke —w w+ k

Nr=mp— |1+ In s
T D2k2|:

2
n,=m —In
S R

w | w+ k 1] ;Lke2



Finding the Poles of [A(K)]¥ or Dispersion relation

o Similarly we can write [A~1(k)]¥ as

[A~YK)Y = CrPY + C PY + CaPl + CinPL + CaPY + CanPl .

o Coefficients C's and a's have the following relationship.

CT:k27w2+a
G =-w+p
G =

Cin =96

Ca= A
Can = X-

@ So once we know «,f3, v, § A and x we can determine coefficient C's.

@ But In order to get dispersion relation we have to find poles of [A(K)]¥ not of

[A=H(K))Y.



Finding the Poles of [A(K)]Y or Dispersion relation

@ Now using the fact that inverse of a vector should exist in same space, one can decompose
[A(K)]”.
[AK)) = aPl + bPE 4 cPY 4 dPi 4 ePT 4 PY
Now, using the relation,
[ RV AR = 6"

@ One can find the following dispersion relation,
2k CaCanCin + CaCL + A Ca,(Co + Cr) — Cr (=K A C2 + CL(Ca+ C1)) =0.  (5)

@ In the weak anisotropy limit, one can write the dispersion relation as,
CiCL— CrC(Ca+ Cr)) =0,

@ Which give following two branches of Dispersion relation,

Ci-C:-CCr=o.
G =o.

@ When C4 = 0, above equations reduces to exactly the same dispersion relation discussed in
Ref. given below for an anisotropic plasma where there is no parity violating effect.

@ Equation for transverse modes give the following solution,

_ —(a+y)E2x

= 3 .

7
19
7P. Romatschke, M. Strickland, Phys. Rev. D 68 036004 (2003)

(K - o)




Dispersion relation

@ In the quasi stationary limit |w| << k one can get the final form of dispersion
relation as w = ip(k), where p(k) is given by.

2.2
7rmD

40’ ¢ ¢
p(k) = <7r4m2D5 Ky |1 — Ky + 15 (1 +5c05205) + (1 + 3cos 26,) (6)

p2alky |

2 . .
o Where ky = ;5—’;, and a = f—w is the electromagnetic coupling.

@ In the limit £ — 0 we will get,

p(k) = (40‘3’@) KL — k]

4,2
7TI71D

o In the limit . — 0 we will get,

40(3;12 > 3 Ter%)
p(k) = <7r4in2D ky | —kn + E(1+3cos29n)

pEoZky

P. Romatschke, M. Strickland, Phys. Rev. D 68 036004 (2003),
Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111, 052002 (2013).
20



Analysis of the instabilities

Weibel instability grows maximally for 8, = 0.

Weibel instability gets suppressed when cos 260, = —1/3 i.e 6, ~ 55°.
@ The ratio of maximum growth rates for chiral and Weibel comes out to be
Teh ny 1 (e 3/2 (&)3
Tw — 4m3 \ € T) "
: . 2 .
@ One can find for 6, = 0 the critical value £ ~ 22/3 <4°‘752) (“—7_5) at which the
maximum growth rates of the two instabilities become comparable.
@ Two instabilities will have comparable growth at a critical angle
2/3 2 2
0. = 1 -1 {(;)/ 12p5a 1

=3 cos 37

5772sz 3

21



Results and conclusions

6,=0°, Im{w]
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— Relul "
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Figure: Shows plots of real and imaginary part of the dispersion relation. Here 6, is the angle between the wave vector k and the
anisotropy vector. Real part of dispersion relation is zero. Fig. (a) show plots for three cases: (i) Pure chiral (no anisotropy), (ii) Pure
Weibel (chiral chemical potential=0) and (iii) When both chiral and Weibel instabilities at 6, = 0. Fig (b-d) represents the case when
both instabilities are present but the anisotropy parameter varries at different values of 6, for fixed pug /T = 1. Here frequency is

403
normalized in unit of w/ 425 and wave-number k by kyy = —L—k
7\'4mD g
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Results and conclusions

— Relw] — Relo]

e £2106, B521,6,20, Imfw]

e =106, E=0.1,6,20", Im[w]
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££0156, E21, 00, Infol, Weibel

16,6, Imlw], Chiral+ Weibel

Figure: Shows plots of real and imaginary part of the dispersion relation. Here 6, is the angle between the wave vector k and the

anisotropy vector. Real part of dispersion relation is zero. Fig. (a-b) represent the case when both the instabilities are present for fixed

& =10&¢ and ug /T = 1, 0.1 by varying 6, respectively. Fig. (c) represents the case when for a particular value of 0 ~ ¢ two

instabilities have equal growth at different £ values. Here frequency is normalized in unit of w / (%) and wave-number k by
mtmy

ky = Msiak
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