3rd International Conference on the Initial Stages in High-Energy Nuclear Collisions (InitialStages2016)

Contribution ID: 40

Type: not specified

On chiral instability in quark-gluon plasma

Wednesday, 25 May 2016 18:30 (20 minutes)

We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θ n) between the propagation vector and the anisotropy direction. It has maximum growth rate at θ n=0 while θ n= $\pi/2$ corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θ n=0, only for a very small values of the anisotropic parameter ξ - ξ c, growth rates of the both instabilities are comparable. For the cases ξ c< ξ «1, ξ ≈1 or ξ ≥1 at θ n=0, the Weibel modes dominate over the chiral-imbalance instability if μ 5/T≤1. However, when μ 5/T≥1, it is possible to have dominance of the chiral-imbalance modes at certain values of θ n for an arbitrary ξ . We also calculate the coefficient of shear viscosity generated by

the instability. Further we discuss consequences of our results for heavy-ion collisions.

Collaboration

Primary author: Prof. BHATT, Jitesh (Physical Research Laboratory)

Co-authors: Mr GANGAR, Avdhesh Kumar (Physical Research Laboratory); Prof. KAW, Predhiman (Institute for Plasma Research)

Presenter: Prof. BHATT, Jitesh (Physical Research Laboratory)

Session Classification: Parallel