Nuclear glue from top quark production in ion collisions at the LHC & FCC

> Initial Stages 2016 Lisbon, May 2016 David d'Enterria CERN

Based on: D.d'E., K. Krajczar, H. Paukkunen PLB 746 (2015) 64; arXiv:1501.05879 [hep-ph]

Top-quark production in hadron collisions

Top-pair production: QCD interaction dominated by gluon-induced processes (+80%,+90% at LHC,FCC energies at NLO):

Single-top production: Electroweak process sensitive to b-quark (from g→bb) PDF:

IS'16, Lisbon, May'16

D.d'Enterria (CERN)

Top-quark decay modes

Top-quark decays ($\tau \sim 0.1$ fm/c) before hadronization into W+b (BR~100%,V_{tb}~1): single t \rightarrow b + 2jets (66%) single t \rightarrow b + 1 ℓ + MET(v) (33%, w/o τ : 22%) ttbar \rightarrow bbar + 4jets (45%) ttbar \rightarrow bbar + 2jets + 1 ℓ + MET(v) (45%) ttbar \rightarrow bbar + 2 ℓ + MET(2v) (10%, w/o τ : 5%)

Top-quark in nuclear collisions

■ Top-quark decays (τ ~0.1 fm/c) before hadronization into W+b (BR~100%,V_{tb}~1): single t → b + 2jets (66%) single t → b + 1ℓ + MET(v) (33%, w/o τ : 22%) ttbar → bbar + 4jets (45%) ttbar → bbar + 2jets + 1ℓ + MET(v) (45%) ttbar → bbar + 2ℓ + MET(2v) (10%, w/o τ : 5%)

Motivations for measurement:

- → One of the few elementary particles (with τ , H) experimentally unobserved so far in A-A collisions.
- → Probes gluon nPDF in unexplored range: x~0.3–10⁻³,Q~m_t~173 GeV
- \rightarrow Decay within-QGP: Colour reconnection of decay b, q's ?
- → Boosted single-top (>1 TeV): τ >1 fm/c (gluon radiation in QGP)
- → Boosted t-tbar pair = color-singlet state probes medium opacity at different time-scales

IS'16, Lisbon, May'16

Top-quark discovery in nuclear collisions

Motivations for measurement:

- → One of the few elementary particles (with τ , H) experimentally unobserved so far in A-A collisions.
- → Probes gluon nPDF in unexplored range: $x\sim0.3-10^{-3}$, $Q\sim m_{t}\sim173$ GeV
- \rightarrow Decay within-QGP: Colour reconnection of decay b, q's ?
- → Boosted single-top (>1 TeV): τ >1 fm/c (gluon radiation in QGP)
- → Boosted t-tbar pair = color-singlet state probes medium opacity at different time-scales

IS'16, Lisbon, May'16

Pb gluon density (high Q²)

Gluon density at Q²~m²_t badly known, in particular in the antishadowing and EMC regions:

Pb gluon density (high Q²)

Gluon density at Q²~m²_t badly known, in particular in the antishadowing and EMC regions:

Theoretical setup

MCFM v6.7 NLO event calculator:

→ Parton densities: Proton PDF: CT10 NLO Pb nPDF: EPS09 NLO (central + 30 error sets) Isospin (u,d quark) effects included.

→ Scales choice: $\mu = \mu_F = \mu_R = m_{top}$

Variations not considered as they mostly cancel in R_{AA} ratios.

MCFM processes:

t-tbar: nproc = 141 (total & semileptonic decays): 141 | $t(\rightarrow \nu(p_3) + e^+(p_4) + b(p_5)) + \bar{t}(\rightarrow b \ (p_6) + e^-(p_7) + \bar{\nu}(p_8))$ | NLO

Single-top: nproc = 161,171; 166,776 (total & semileptonic decay):

$\begin{array}{c} 161 \\ 166 \end{array}$	$t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + q(p_6)[\text{t-channel}] \\ \bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \bar{b}(p_5)) + q(p_6)[\text{t-channel}]$	NLO NLO
171 176	$ \begin{array}{l} t(\to \nu(p_3) + e^+(p_4) + b(p_5)) + b(p_6)) \text{[s-channel]} \\ \bar{t}(\to e^-(p_3) + \bar{\nu}(p_4) + \underline{b}(p_5)) + b(p_6)) \text{[s-channel]} \end{array} $	NLO NLO

Additional higher-order corrections (not included) are small: K-factor=NNLO/NLO ~10% for ttbar & single-t

t-tbar total x-sections in p-p, p-Pb, Pb-Pb

Pb-Pb: LHC(5.5 TeV) = 3.4 µb $FCC(39 \text{ TeV}) = 300 \mu b$ p-Pb: LHC(8.8 TeV) = 59 nb $FCC(63 \text{ TeV}) = 3.2 \,\mu b$ p-p (reference): LHC(5.5 TeV) = 75 pbLHC(8.8 TeV) = 270 pb FCC(39 TeV) = 6.5 nbFCC(63 TeV) = 15 nb

> nPDF anti-shadowing increases σ_{H} by +(2-8)%

→ Cross-sections increase by ×55-85 from LHC to FCC

IS'16, Lisbon, May'16

Single-top total x-sections in p-p, p-Pb, Pb-Pb

Top-quark dileptons measurement

Experimental setup:

- LHC (ATLAS/CMS): $|\eta_{lepton}|, |\eta_{b-jet}| < 2.5$
- FCC ("CMS+LHCb"): $|\eta_{lepton}|, |\eta_{b-jet}| < 5.0$

Analysis cuts (typical ones in p-p at LHC, lepton= e,μ):

- t-tbar: $p_{\tau}(lepton), p_{\tau}(b-jet) > 20,30 \text{ GeV}; R_{isol}(b-jet, lepton) = 0.3$ $|\eta(lepton)|, |\eta(b-jet)| < 2.5 (LHC), 5.0 (FCC)$ MET > 40 GeV; $m_{\mu} > 20 \text{ GeV}; |m_{\mu}-m_{\tau}| > 15 \text{ GeV}$
- Single-t: Same cuts as for t-tbar (only W+t, backgrounds are much worst for s-,t-channel)
- Acceptance & efficiency losses:

t-tbar: $Acc \times Eff \sim 40\%$ (LHC), 50% (FCC)

Single-top: Acc×Eff ~ 21% (LHC), 30% (FCC)

Backgrounds (W,Z+j): Controllable for t-tbar (much worst for single-t)

Expected t-tbar & single-top yields

- Final-state: ttbar \rightarrow b(bar) + 2 ℓ (e, μ) + MET(2 ν)
- Final-state: single $t \rightarrow b + 1\ell$ (e, μ) + MET(ν)

System	√s _{NN}	L _{int}	N(t-tbar)	N(t+W)
Pb-Pb	5.5 TeV	1 nb ⁻¹ 10 nb ⁻¹	90 900	3 30
p-Pb	8.8 TeV	0.2 pb ⁻¹ <i>1 pb⁻¹</i>	300 1.500	10 50
Pb-Pb	39 TeV	33 nb⁻¹	310.000	8.600
p-Pb	63 TeV	8 pb ⁻¹	800.000	21.500

LHC (nominal L_{int}): ~100 t-tbar pairs in Pb-Pb, p-Pb O(10³) tops for enhanced lumis.

FCC (nominal L_{int}): 0.3–0.8 million t-tbar pairs in Pb-Pb, p-Pb

e,μ's final-state unaffected by

OGP effects

Differential top-pair p_{T} distributions

IS'16, Lisbon, May'16

13/22

PbPb→ttbar+X (5.5 TeV): Nuclear modif. factor

PbPb → ttbar+X (5.5 TeV): Gluon density constraints

pPb→ttbar+X (8.8 TeV): Nuclear modif. factor

IS'16, Lisbon, May'16

pPb→ttbar+X (8.8 TeV): Gluon density constraints

IS'16, Lisbon, May'16

PbPb→ttbar+X (39 TeV): Nuclear modif. factor

PbPb→ttbar+X (39 TeV): Gluon density constraints

D.d'Enterria (CERN)

pPb→ttbar+X (63 TeV): Nuclear modif. factor

pPb→ttbar+X (63 TeV): Gluon density constraints

Significant reduction in uncertainties at low-x (x<10⁻²), antishadowing (x~0.05) and EMC (x~0.5) regions

(stat. to dominate over syst. uncertainties)

nPDF effects (lepton): ±10% Strong constraining power

Conclusion

Top quark (pair & single?) production is clearly observable in nuclear collisions (p-Pb & Pb-Pb) at LHC/FCC.

MCFM: NLO, CT10 PDF, EPS09 nPDF (30 error sets):

- → LHC: 1st obvs. of heaviest elementary particle in A-A. Mild PDF constraints
- → FCC: Strong nPDF constraints in unexplored range: x~10⁻³-0.3, Q~m_t
- → FCC: QGP effects: Color reconnect., g-radiation, color-singlet evolution...

IS'16, Lisbon, May'16

D.d'Enterria (CERN)

Back-up slides

PbPb→single-t+X (5.5 TeV):Nuclear modif. factor

pPb→single-t+X (8.8 TeV): Nuclear modif. factor

PbPb→single-t+X (39 TeV):Nuclear modif. factor

26/22

pPb→single-t+X (63 TeV): Nuclear modif. factor

