Initial stages of a HI collision: where are we?

3rd International Conference on Initial Stages in High Energy Nuclear Collisions

Barbara Jacak
UC Berkeley & LBNL

May 23, 2016
An Experimentalist's View
What relevant things can we measure?

- EM probes
 Can we learn about early time dynamics?

- System dependence of hydro behavior
 What’s happening in small systems?

- High p_T probes in QGP
 Parton interactions with dense media

- Heavy Quarks
 Production cross sections: gluon density
 Energy loss in QGP: interaction mechanism
 Quarkonia in p/d+A: these + CNM breakup
Do data have room for pre-equilibrium or thermal dileptons, if there is ρ broadening and charm σ is right?
At modest and high p_T, insufficient statistics to say much.
Low p_T photons

There are “extra” photons with $p_T < 4$ GeV/c, with $v_2 \neq 0$

Interpreted as late emission, but maybe we should rethink
A drop of QGP even in p/d+A?

p/d + A show same trend as A + A hydrodynamics in small systems?!
Collective flow in small systems?

Significant v_N (n=2 to 5) with “familiar” ordering + shape in p_T

- Collectivity in tiny system?
- Initial non-Abelian quantum fields behave incoherently?
- Correlations between particles produced in initial state?
- Radial flow an artefact of constant temperature freezeout surface?

Multi-particle correlations ($v2\{4\} \approx v2\{6\} \approx v2\{8\} \approx v2\{LYZ\}$)
v_n sensitivity to fluctuation scale

λ (fm)

$\mathcal{O}(10)$

Macro

$\mathcal{O}(1)$

Meso

$\mathcal{O}(0.1)$

Micro

$\ell_{\text{macro}} \sim R_{Pb}$

$\ell_{\text{meso}} \sim 1/\Lambda_{\text{QCD}}$

$\ell_{\text{micro}} \sim \tau_\pi = \frac{5 \eta}{T_\beta}$

$\sim 1/Q_\beta$

Hydrodynamics

Δv_{2n}

Δv_{3n}

Δv_{4n}

Δv_{5n}

$\text{PbPb } \sqrt{s_{\text{NN}}} = 2.76 \text{ TeV}$

$\text{mckln } 0-5\%$

$\text{mckln } 20-30\%$

- v_n in Pb+Pb not sensitive to fluctuations smaller than ~ 0.5 fm

Different story in p+Pb

- Compare p+Pb and Pb+Pb at same multiplicity
 System size is different
- Viscous effects larger in p+Pb
 are we in the regime where hydro is fully applicable?
Position-momentum correlations? HBT!

More evidence for hydro
same Npart: same emission duration but smaller system

How could so little matter approach isotropy so fast?
What gluon structure does the system equilibrated FROM?
Mechanism of fast isotropization

- Hard to measure directly!

- Try, instead, to pin down mechanisms of QCD in hot dense matter

 How are jets quenched?

 How is deposited energy transported?

 Heavy vs. light quark probes
Jet fragmentation softens in matter

ATLAS Preliminary

Pb+Pb 0-10%

Jet $p_T > 100$ GeV

R=0.4

CMS PLB 730 (2014) 243

CMS PbPb, $\sqrt{s_{NN}} = 2.76$ TeV

L dt = 150 μb$^{-1}$

anti-k_T jets: R = 0.3

0-10%

$p_T^{jet} > 100$ GeV/c

$0.3 < |\eta^{jet}| < 2$

$p_T^{track} > 1$ GeV/c

\[\rho(r) = \frac{1}{\delta r N_{jets}} \frac{1}{N_{jets} \Sigma_{tracks \in (\eta, \phi)}} \frac{\sum_{tracks \in (\eta, \phi)} p_T^{track}}{p_T^{jet}} \]
Softer and broader in γ-h at RHIC

- Enhanced production of jet-correlated soft particles at large angles for soft γ triggers
- Parton energy jet dependence?
Angular distribution of soft fragments

Dijet balance recovered at low p_T and large angle

But see a similar effect of balance recovery in $p+p$

Depends on jet definition???

Matt Nguyen, QM15

Missing $p_T^{||}$: pp vs. PbPb

- Familiar shift of energy to lower p_T “fragments”
- No large angular redistribution of total energy flow w.r.t. to pp
How does energy flow to large angle?

- Go from the angular ordering seen in vacuum fragmentation
- To a medium-induced cascade \rightarrow time-ordered

High energy jets fragment mostly outside the plasma radiate gluons as they transit plasma, producing secondary showers with enhanced splitting

Softer jets resolved by medium; fragment inside?

Y. Mehtar-Tani: 1602.01047

In-medium cascade

Fundamentally different from the vacuum cascade

- **No collinear divergence** due to rescatterings \(k_\perp^2 \sim \hat{q} t \)
- **Probabilistic picture**: evolution variable \(t \sim L \)
- **Incoherent large angle gluon radiation** (with the leading parton)

 Turbulent transport of energy to large angles

 ↓

 Might explain missing \(p_T \) in dijet events (CMS 2011-2014)

Initial state @ small x is dense: similar effects?!
Insights from heavy quarks
Charm quarks lose energy, too!

* As much energy loss as light quarks!
* Less phase space for gluon radiation, so collisional energy loss must be important

\[\Delta E_{\text{collision}} \sim L \quad \Delta E_{\text{radiative}} \sim L^2 \text{ (maybe also } L \ldots) \]
Energy loss and medium density

- In dilute medium
 Independent processes: bremsstrahlung & scattering
 Calculate probabilities and add them up
 Independent radiations follow Bethe-Heitler

- In dense medium
 Mean free path is short: $\lambda = \sigma/\rho$
 Formation time of radiated gluon: $\tau = \omega/k_T^2$
 Transverse momentum of radiated gluon: $k_T^2 = n\mu^2$
 # of collisions $n = L/\lambda$, $\mu =$ typical p_T transfer in 1 scattering
 λ, μ are properties of the medium, combine to $q = \sqrt{\mu^2/\lambda}$

- Non-factorization in the dense medium!
 Next scattering takes place faster than gluon formation
 Add amplitudes for all multiple scatterings
 In QCD this increases the energy loss!

see evidence also in cold matter!
Triple differential J/ψ data in $d+\Lambda$

- p_T broadening
 - \Rightarrow multiple scattering

- p_T, y, centrality dependence not reproduced by various models

- Global Scale Uncertainty 8.3%
 - Kopeliovich et al.
 - Lansberg et al.
 - $nDSg \sigma_{abs} = 4.2 \text{ mb}$

- Global Scale Uncertainty 7.8%
 - Kopeliovich et al.
 - Lansberg et al.
 - $nDSg \sigma_{abs} = 4.2 \text{ mb}$

- Global Scale Uncertainty 8.2%
 - Kopeliovich et al.
 - Lansberg et al.
 - $nDSg \sigma_{abs} = 4.2 \text{ mb}$

PRC87, 034911 (2013)
coherent parton energy loss and p_T broadening from multiple scattering in the nucleus is consistent with data!

$\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$

\textit{Dynamics of the probe & structure of the medium mix!!}
Why worry about “parton dynamics”?

- Nuclear pdf’s aren’t the whole story!

- In p/d+A you probe cold nuclear matter with a parton, not a photon.
 - It can lose energy before the hard scattering
 - It can lose energy after the hard scattering
 - It can experience multiple scattering

- No factorization!!!!

- These are effects upon the probe, not part of the structure of cold nuclear matter!

- How to sort this out?
• Probe is a gluon
• Probe has structure!
• Dynamics of the probe mixed up with structure of the nucleus
Use ions in an electron-ion collider
Conclusions

- Flow signals in small systems are numerous
 Perhaps still ambiguous?
- In-medium jet modification indicates modified cascade
 Initial stage is cold, but also dense medium
 Take insights from jets in QGP to calculation early
time dynamics
- Radiation vs. collisions not settled yet
- We see non-factorization of eloss & hard scattering
 Initial/final state radiation can interfere
 Shouldn’t include p+A in nPDF fits??
 Sort out using electron-ion collisions!
● Backup
Probe nucleons & nuclei with electrons

- How many gluons are there?
 Measure $e+p$, $e+A \rightarrow e$

- How are they distributed?
 In space? In momentum?
 Measure $e+p$, $e+A \rightarrow e + \text{hadrons, } e + \gamma$
 or J/ψ

- How are they correlated inside nucleus?
 Measure $e+p$, $e+A \rightarrow e + \geq 2 \text{ hadrons}$

- What's gluon range inside a nucleus?
 Measure hadron production
nPDFs:

\[R = \frac{f_i/A}{Af_i/p} \approx \text{measured} \]
\[\approx \text{expected if no nuclear effects} \]

- Lack of data ⇒ models give vastly different results for small scales and \(x \) in benchmark HIC.

Available DGLAP analysis at NLO shows large uncertainties at small scales and \(x \).

Is mixing \(eA \) and \(pA \) in nPDFs wise?

Mixes structure with parton probe dynamics.
Hot, dense gluonic matter is surprising
Are cold dense gluons weird too?

- Look deep in a nucleus: gluons are numerous

- At high density what then?

- This is our initial state in heavy ion collisions!

\[
\frac{1}{Q_s^2} \quad \text{Greater gluon density Grows}
\]

\[
Q_s^2 \sim A^{1/3} \frac{1}{x^{0.3}}
\]

\[
\text{Increasing probe energy} \rightarrow
\]

Probe with e+A
Parton-medium interaction: energy flow

- If AdS/CFT is right, don’t produce any gluons!
- If gluon radiation/splitting is enhanced by QGP:

 extra gluons at small angles (in/near jet cone)

 radiated gluons thermalize in medium (i.e. they’re gone!)

 remain correlated with leading parton, but broaden/change jet
Consider two subsequent splittings in medium (antenna radiation pattern).

In-Medium Interactions suppress color coherence of the two charges system freeing extra in-cone soft radiation.

SOFT RADIATION OFF A HARD ANTENNA

\[t_{f1} \ll L \ll t_{f2} \]

Decoherence parameter

\[\Delta_{med} \equiv 1 - e^{-r_{\perp}Q_s^2} \]

Coherence: unresolved jet, decoherence: resolved substructure.
Triple differential J/ψ data in d+Au collisions

R_{dAu} (60-88%)

R_{dAu} (0-20%)

R_{CP}

$d+Au \rightarrow J/\psi$ from PHENIX

Forward + y
Backward - y
d-going
Au-going

Centrality 0-20%
Global Scale Uncertainty ±8.5%

Centrality 60-88%
Global Scale Uncertainty ±10%

Global Scale Uncertainty ±8.2%
Interactions with plasma?

- radiation (bremsstrahlung)
- collisional energy loss

In plasma: interactions among charges of multiple particles
charge is spread, screened in characteristic (Debye) length, λ_D
also the case for strong, rather than EM force ... Effect on collisions?

- α_s is not small so coupling is strong!
- In AdS/CFT: QGP field is modeled as ∞ strongly coupled
 q & g interact with this QGP as with a tiny black hole
 No particles to hit, none can survive inside. Eloss \rightarrow collective excitations

S. Gubser

Figure 2: Left: a screened attraction between static quark arises from a string dipping into AdS$_5$-Schwarzschild. Right: a drag force arises from a string tailing behind a moving quark.
See hints at RHIC for saturation of gluons

\[\text{Dilute parton system (deuteron)} \]

\[\text{P_T is balanced by many gluons} \]

\[\text{Dense gluon field (Au)} \]

Saturated gluon field is easier to equilibrate???

QCD Compton scattering to find out \((q+g \to q+\gamma)\):

no final state effects on \(\gamma\)!

Being measured now...

But – incoming parton dynamics are still confusing (the probe loses energy)
Heavy Quarks stop, too!
In the longer term

An electron-ion collider probe structure directly

Enhance Q_s with A, not energy
Jet Fragmentation function

\[D(z) = \frac{1}{N_{\text{jet}}} \frac{dN(z)}{dz}; \quad z = \frac{p_{\text{had}}}{p_{\text{jet}}} \]

Measure: count partners per trigger as fraction of trigger momentum

\[z_T = \frac{p_{T\text{a}}}{p_{T\text{t}}} \sim z \quad \text{for } \gamma \text{ trigger} \]

\[\xi = \ln(1/z_T) \]

Modification factor similar to \(R_{AA} \):

\[I_{AA} \equiv \frac{(1/N_{\text{trig}} dN/d\xi)_{AA}}{(1/N_{\text{trig}} dN/d\xi)_{pp}} \]

FFn experimental challenge:
measure the parton \(p \)

Use trigger \(\gamma \) or jet